

Utilizing AI to Personalize Mathematics Learning

Nur Choiro Siregar*¹, Roslinda Rosli², Rahmadani Siregar³

¹*Universitas Muhammadiyah Tangerang, Indonesia*

²*Universitas Kebangsaan Malaysia, Malaysia*

³*Universitas Islam Negeri Syekh Ali Hasan Ahmad Addary Padangsidimpuan*

email: nur.choiro@umt.ac.id

ARTICLE INFO

Keywords:

*Artificial intelligence;
Transformative;
Mathematics performance*

ABSTRACT

The application of artificial intelligence (AI) in education is a potential solution to deal with the diversity of students' abilities and learning styles, especially in mathematics learning. Conventional learning approaches are often not able to accommodate these differences optimally. This study aims to analyze the influence of AI-based learning on mathematics learning achievement with student involvement as a mediating variable. The research used a quantitative approach involving 100 students of the University of Muhammadiyah Tangerang. Data were analyzed using Partial Least Squares-Structural Equation Modeling (PLS-SEM). The results of the study show that AI-based learning has a positive and significant effect on mathematics learning achievement. In addition, AI-based learning also increases student engagement, which plays an important role in strengthening academic achievement. These findings confirm that the effectiveness of AI in math learning depends not only on material adjustments, but also on its ability to encourage active student engagement. Therefore, AI integration needs to be accompanied by pedagogical strategies oriented towards increasing participation and learning motivation.

This is an open access article under the [CC-BY-SA](#) license.

INTRODUCTION

In recent years, advances in AI have created new opportunities to transform educational practice, particularly in mathematics instruction (Engelbrecht & Borba, 2024; Hwang & Tu, 2021). Personalized learning, defined as the tailoring of learning paths, content, feedback, and pacing to meet the individual needs of students, has become increasingly important as classrooms become more diverse in terms of prior knowledge, learning styles, and learning paces (Bernacki et al., 2021). Traditional one-size-fits-all approaches are often insufficient to accommodate such diversity, resulting in disparities in achievement, motivation, and engagement (Asmar et al., 2022). AI technologies, including intelligent tutoring systems, adaptive learning platforms, generative AI, and conversational agents, offer considerable potential to address these challenges by providing individualized support at scale (Guettala et al., 2024; Oubagine et al., 2025).

Tang (2025) notes that adaptive systems can dynamically respond to student errors, misconceptions, and learning pace, thereby improving engagement and deepening understanding through targeted feedback. Similarly, Wang (2025) highlights that teacher attitudes, technological pedagogical content knowledge (TPACK), and contextual supports are essential for successfully integrating AI to personalize learning in primary mathematics

classrooms. These studies emphasize that personalization is not solely an algorithmic function but also depends on human factors such as teacher readiness, curriculum alignment, and institutional support.

More recent innovations go beyond reactive adaptation toward proactive AI-generated learning experiences. For example, Liu et al. (2025) developed a conversational tutoring agent that models individual learning styles and employs Socratic dialogue and real-time feedback to improve both learning outcomes and student satisfaction. Likewise, Wang (2025) proposes an AI-generated content system that tailors tasks, explanations, and assessments to student strengths and weaknesses, representing a shift toward anticipatory personalization. Crucially, the effectiveness of AI-driven personalization is closely linked to engagement. Studies show that adaptive AI interventions enhance behavioral, cognitive, and emotional engagement by reducing frustration, improving confidence, and fostering persistence. For instance, Fletscher et al. (2025) demonstrate that flexible virtual environments adapted to student preferences increase both motivation and knowledge retention, while research on adaptive mathematics tools confirms the role of immediate, scaffolded feedback in sustaining engagement.

Despite this promise, challenges remain. Teacher adoption is uneven, with attitudes, competencies, and institutional support determining whether AI tools are embraced or underutilized (Integrating Artificial Intelligence in Primary Mathematics Education, 2025). Without adequate professional development, AI may be implemented superficially and fail to produce meaningful gains. In addition, concerns regarding algorithmic bias, data privacy, and equitable access must be addressed to prevent personalization from reinforcing educational inequalities (Ramadhani & Ramadani, 2024; Tang, 2025). Furthermore, misalignment between AI-driven content and curricular goals risks producing engaging but academically ineffective experiences.

Nevertheless, growing evidence over the past five years supports the effectiveness of AI-driven personalization in improving mathematics learning outcomes across both cognitive domains, such as problem-solving and conceptual understanding, and non-cognitive domains, including motivation, self-efficacy, and engagement. What remains underexplored are the mechanisms by which these effects occur, particularly the mediating role of student engagement, as well as differential outcomes across learner characteristics and the sustainability of gains over time. In response, the present study aims to extend the literature by examining how AI-driven learning can be used to personalize mathematics learning, with a specific focus on its impact on achievement and the mediating role of student engagement. Drawing on quantitative methods and student data, the study investigates both direct and indirect pathways of influence, thereby contributing insights into not only the effectiveness of AI-driven personalization but also the psychological mechanisms and contextual conditions under which its impact is maximized.

METHODE

This study employed a quantitative research design utilizing the PLS-SEM approach to examine the relationships among AI-driven learning, student engagement, and mathematics achievement, with a particular focus on testing both direct and mediating effects. The participants consisted of 100 students from Universitas Muhammadiyah Tangerang, selected through a purposive sampling strategy that specifically targeted learners engaged in mathematics instruction supported by AI-driven platforms. The research instrument

measured three key constructs: AI-driven learning, student engagement, and mathematics achievement, which were validated using Cronbach's Alpha, Composite Reliability (CR), and Average Variance Extracted (AVE) to ensure reliability and validity. A questionnaire using a Likert Scale (1-5). Data were collected through structured instruments and subsequently analyzed using SmartPLS 3, which facilitated the assessment of measurement and structural models. The analytical procedures included evaluating construct reliability and validity, testing structural relationships through path coefficients, R^2 values, f^2 effect sizes, and t-statistics, as well as examining the mediating role of student engagement in predicting mathematics achievement. Furthermore, discriminant validity was assessed using the Fornell-Larcker criterion, and hypothesis testing was performed through bootstrapping procedures embedded in SmartPLS. Ethical considerations were observed throughout the study, including obtaining informed consent from participants, ensuring the confidentiality and anonymity of responses, and using the data exclusively for academic research purposes.

RESULT AND DISCUSSION

Reliability and validity

Table 1 uses Cronbach's alpha, CR, and AVE to examine the reliability and validity test.

Table 1. Reliability and validity test

	Cronbach's Alpha	rho_A	Composite Reliability (CR)	Average Variance Extracted (AVE)
AI-driven	0.906	0.913	0.925	0.606
Math Achievement	0.907	0.914	0.926	0.612
Student Engagement	0.902	0.908	0.922	0.597

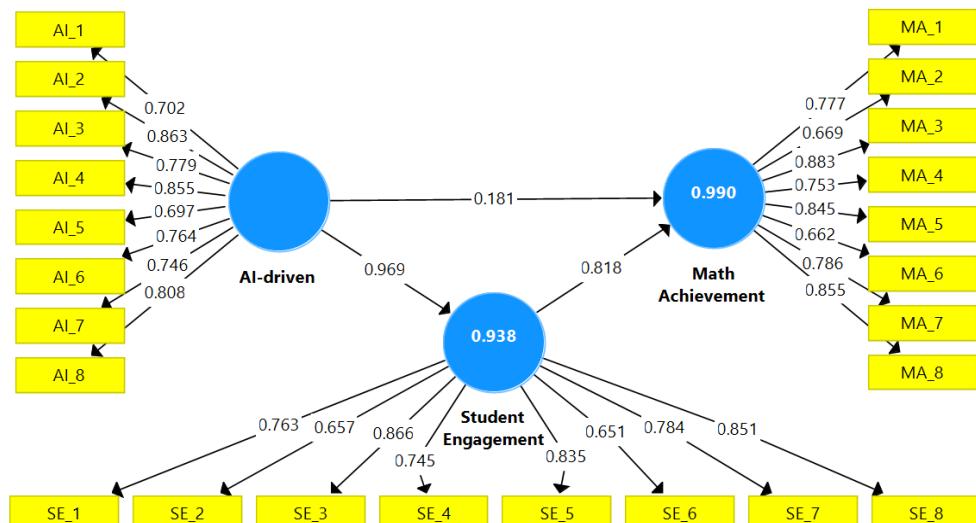


Figure 1. Data Processed

Table 1 and Figure 1 present the results of the construct reliability and validity tests, including the values of Cronbach's Alpha, rho_A, CR, and AVE for the three research variables: AI-driven learning, Mathematics Achievement, and Student Engagement. All Cronbach's Alpha values exceed 0.90 (AI-driven = 0.906; Mathematics Achievement = 0.907; Student Engagement = 0.902), indicating a very high level of internal consistency, well above the

recommended minimum threshold of 0.70 (Nunnally, 1978). Furthermore, the CR values for all three constructs are above 0.92 (AI-driven = 0.925, Mathematics Achievement = 0.926, and Student Engagement = 0.922). These results confirm the strong reliability of each construct and demonstrate that its indicators consistently measure the intended latent variables. About convergent validity, the AVE values for all constructs are greater than 0.50 (AI-driven = 0.606; Mathematics Achievement = 0.612; Student Engagement = 0.597). This indicates that each construct adequately captures the variance of its indicators, thus fulfilling the criteria for convergent validity (Fornell & Larcker, 1981; Siregar, 2020).

Overall, the reliability and validity tests in Table 1 demonstrate that all constructs in this study are both reliable and valid, thereby providing a solid foundation for subsequent structural model analysis using the PLS-SEM approach.

Discriminant validity

Table 2. Discriminant validity

	AI-driven	Math Achievement	Student Engagement
AI-driven	0.779		
Math Achievement	0.974	0.782	
Student Engagement	0.969	0.994	0.773

According to Fornell and Larcker (1981), discriminant validity is established when the square root of the AVE for each construct is greater than its correlation with other constructs in the model. Discriminant validity is a crucial step in construct validation because it ensures that each latent variable measures a concept that is empirically distinct from other constructs included in the model. Without sufficient discriminant validity, the boundaries between constructs may blur, leading to potential redundancy, overlapping meanings, and compromised interpretations.

In this study, discriminant validity was assessed using the Fornell-Larcker criterion, which remains one of the most widely adopted techniques in SEM. As shown in Table 2, the square root of the AVE values is 0.779 for AI-driven learning, 0.782 for mathematics achievement, and 0.773 for Student Engagement. These values are placed diagonally in the correlation matrix, while the off-diagonal entries represent the correlations among the constructs. The diagonal values, which correspond to the square roots of AVE, are consistently higher than the correlations between constructs, thereby providing evidence of discriminant validity.

More specifically, the square root of AVE for AI-driven learning (0.779) is greater than its correlations with mathematics achievement (0.974) and student engagement (0.969). Likewise, the square root of AVE for mathematics achievement (0.782) exceeds its correlations with AI-driven learning (0.974) and Student Engagement (0.994). Finally, the square root of AVE for student engagement (0.773) is also larger than its correlations with AI-driven learning (0.969) and mathematics achievement (0.994). At first glance, it is important to note that the correlations among constructs are very high, with values such as 0.974, 0.969, and 0.994. High inter-construct correlations may raise concerns regarding potential multicollinearity and overlap among constructs. However, the fact that the square roots of the AVE remain greater than these correlation coefficients suggests that the constructs still maintain discriminant validity. This means that even though the constructs

are strongly associated, they do not collapse into one another; each still represents a unique dimension of the research model.

In the context of this study, AI-driven learning, mathematics achievement, and student engagement are related yet conceptually distinct constructs. AI-driven learning represents the technological and pedagogical innovations that adapt to students' needs through artificial intelligence. Mathematics achievement reflects students' cognitive outcomes and mastery of mathematical concepts. Student engagement, on the other hand, captures motivational and behavioral dimensions such as participation, interest, and persistence. The application of the Fornell-Larcker criterion in this analysis not only provides statistical evidence of discriminant validity but also reinforces the theoretical underpinnings of the model. By demonstrating that each construct is empirically distinct, the findings strengthen the argument that AI-driven learning contributes to educational outcomes in ways that are not fully explained by student engagement or achievement alone.

Similarly, student engagement, although closely tied to achievement, retains its unique explanatory power and should not be reduced merely to a proxy for performance. This separation is essential for the integrity of the structural model, as it prevents conceptual overlap and ensures that the hypothesized relationships among constructs can be interpreted with confidence. Furthermore, establishing discriminant validity has important implications for the broader field of educational technology research. In studies where constructs are highly correlated, researchers face the risk of drawing misleading conclusions if discriminant validity is not verified. For instance, if AI-driven learning and student engagement were not empirically distinct, then any observed relationship between AI tools and student engagement could simply reflect measurement redundancy rather than a true educational phenomenon.

The Fornell-Larcker test provides reassurance that this is not the case, confirming that each construct adds unique value to the model. It is also worth highlighting that discriminant validity works in tandem with convergent validity to establish the overall validity of the measurement model. Convergent validity ensures that indicators of a construct are strongly correlated and load significantly onto the same factor, while discriminant validity ensures that constructs are distinct from one another. In the present study, the AVE values were above the recommended threshold of 0.50, suggesting adequate convergent validity. When combined with the evidence of discriminant validity through the Fornell-Larcker criterion, the measurement model can be considered both robust and reliable.

Finally, these results confirm that the three constructs: AI-driven learning, mathematics achievement, and student engagement are empirically distinct and measure different aspects of the research model. Thus, the model demonstrates adequate discriminant validity, ensuring that the constructs are not only reliable but also conceptually and statistically separate. This distinction enhances the interpretability of the findings, supports the theoretical contributions of the study, and strengthens the validity of subsequent structural analyses. Ultimately, the rigorous validation of constructs underscores the credibility of the research, providing a sound foundation for drawing conclusions about the role of AI in shaping learning outcomes and student engagement in mathematics education.

Goodness of Fit (GOF)

The GoF index serves as a comprehensive measure to evaluate the overall adequacy of both the measurement and structural models in PLS-SEM. Unlike individual measures of validity and reliability that focus only on isolated components of the model, the GoF index provides a global assessment by integrating both measurement quality and explanatory

power. This makes it particularly valuable for researchers aiming to present a holistic evaluation of their model's performance. As suggested by Wetzels et al. (2009), GoF values can be classified into three categories: small (0.10), medium (0.25), and large (0.36). These thresholds allow for a straightforward interpretation of the extent to which a model is able to account for the observed variance in the data, with higher values indicating a more satisfactory fit between the model and empirical reality.

In the context of the present study, the findings reveal that the obtained GoF value surpasses the threshold for a large effect size. This outcome is particularly meaningful because it suggests that the proposed research model demonstrates substantial explanatory power. A large GoF value implies that the combined performance of the measurement model (which captures reliability and validity of the constructs) and the structural model (which specifies relationships among constructs) is highly satisfactory. Consequently, the evidence provided by the GoF index serves as a powerful validation of the research design, signaling that the constructs included AI-driven learning, student engagement, and mathematics achievement collectively offer a robust representation of the underlying theoretical framework. Moreover, the attainment of a large GoF value has significant implications for both theory and practice.

From a theoretical standpoint, it confirms that the conceptual model is well grounded and capable of explaining complex interactions among the constructs. It also demonstrates that the hypothesized relationships are not only statistically supported but also aligned with the actual data patterns observed. From a practical perspective, the strong GoF reinforces the relevance of integrating AI-driven learning tools into educational environments, as these tools meaningfully contribute to student engagement and learning outcomes in mathematics. The robustness of the GoF outcome further ensures that the insights derived from the model are reliable enough to inform policy, curriculum design, and instructional practices.

Additionally, the GoF index complements other forms of model assessment, such as convergent validity, discriminant validity, and reliability measures. While these indicators focus on ensuring that constructs are accurately measured and distinct, the GoF provides a final global check to ensure that the entire model operates effectively as an integrated whole. This layered approach to validation strengthens confidence in the study's findings by demonstrating that the results are not artifacts of measurement error or misspecification. Instead, they reflect genuine relationships among the constructs, thereby enhancing the credibility of the conclusions.

Accordingly, the GoF outcome reinforces the suitability of employing AI-driven learning, student engagement, and mathematics achievement as key constructs in explaining the relationships investigated in this study. The high GoF value not only verifies that these constructs are individually valid but also confirms that their integration produces a model with strong explanatory capacity. In summary, the evidence from the GoF analysis highlights the adequacy, reliability, and robustness of the model, establishing it as a solid foundation for advancing knowledge in the intersection of artificial intelligence, pedagogy, and mathematics education.

R Square

Table 3. R Square

	R Square	R Square Adjusted
Math Achievement	0.99	0.99
Student Engagement	0.938	0.938

Table 3 presents the coefficient of determination (R^2) values for the endogenous latent variables in the model, namely Mathematics Achievement and Student Engagement. As outlined by Chin (1998b), R^2 values may be categorized as substantial (0.67), moderate (0.33), or weak (0.19). The results indicate that Mathematics Achievement achieved an R^2 value of 0.99, suggesting that AI-driven learning and student engagement collectively explain 99% of the variance in students' mathematics achievement. This exceptionally high level of explanatory power reflects a substantial effect, demonstrating that the integration of AI-driven learning and student engagement provides a highly reliable prediction of learning outcomes.

Similarly, Student Engagement recorded an R^2 value of 0.938, indicating that AI-driven learning alone accounts for 93.8% of the variance in student engagement. This value also falls within the substantial category, thereby highlighting AI-driven learning as a powerful predictor of student engagement in mathematics education.

Taken together, the R^2 values reported in Table 3 underscore the robustness of the structural model, confirming that the constructs under investigation AI-driven learning, student engagement, and mathematics achievement are strongly interrelated and capable of explaining a significant proportion of the variance in the outcome variables. These findings emphasize the pivotal role of AI-driven learning in fostering both engagement and achievement, thereby reinforcing the theoretical foundations of this study.

f Square

Table 4. f Square

	AI-driven	Math Achievement	Student Engagement
AI-driven		0.196	15.213
Math Achievement			
Student Engagement		3.999	

Table 4 presents the effect size (f^2) values for the relationships among AI-driven learning, Student Engagement, and Mathematics Achievement. As suggested by Cohen (1988), f^2 values are classified as small (0.02), medium (0.15), and large (0.35). The findings indicate that AI-driven learning exerts a significant effect on Student Engagement ($f^2 = 15.213$), demonstrating that the integration of AI-driven approaches substantially enhances students' engagement in mathematics learning. It highlights the crucial role of AI technologies in promoting motivation, engagement, and sustained participation in the learning process.

Conversely, the direct influence of AI-driven learning on Mathematics Achievement ($f^2 = 0.196$) is categorized as medium. It suggests that while AI-driven learning has a meaningful effect on student performance, its direct contribution is not as substantial as its influence on engagement. Instead, its impact on achievement appears to be more effectively transmitted through increased engagement.

Furthermore, Student Engagement exhibits a significant effect on Mathematics Achievement ($f^2 = 3.999$), reinforcing its role as a key mediator. This finding confirms that students' active participation and motivation make a significant contribution to their academic achievement in mathematics.

Overall, the f^2 results reported in Table 4 provide compelling evidence of the structural relationships within the model. They highlight that AI-driven learning primarily enhances achievement indirectly by fostering engagement, while engagement itself is found to be a critical determinant of academic success in mathematics.

Hypothesis test

Table 5. Hypothesis test

Relationship		Original Sample (O)	Sample Mean (M)	Standard Deviation (STDEV)	T Statistics (O/STDEV)	P Values
H1	AI-driven \rightarrow Math Achievement	0.181	0.165	0.091	1.98	0.048
H2	AI-driven \rightarrow Student Engagement	0.969	0.969	0.006	175.149	0.000
H3	Student Engagement \rightarrow Math Achievement	0.818	0.835	0.091	8.947	0.000

H1: AI-driven learning \rightarrow Mathematics Achievement ($\beta = 0.181$, $p = 0.048$) AI-driven personalized learning has a positive and significant effect on mathematics achievement, but the effect size is small. H2: AI-driven learning \rightarrow Student Engagement ($\beta = 0.969$, $p = 0.000$) AI-driven learning has a powerful and significant impact on student engagement ($\beta = 0.969$, $p < 0.001$). H3: Student Engagement \rightarrow Mathematics Achievement ($\beta = 0.818$, $p = 0.000$) Student engagement strongly predicts mathematics achievement. It supports the hypothesis that engagement mediates the effect of AI-driven learning on achievement.

Effect of AI-Driven Learning on Mathematics Achievement

The first hypothesis (H1) proposed that AI-driven learning exerts a positive influence on students' mathematics achievement. The empirical findings support this proposition, indicating that AI-driven learning has a medium-sized direct effect on achievement ($f^2 = 0.196$), with a statistically significant path coefficient (β). It suggests that the integration of AI-based tools such as adaptive learning systems, intelligent tutoring platforms, and personalized feedback mechanisms contributes meaningfully to students' performance in mathematics (Cho & Kim, 2025; Lin et al., 2023; Strielkowski et al., 2025).

Theoretically, these findings are consistent with a growing body of research demonstrating that AI-based educational systems enhance learning outcomes by personalizing instruction, identifying misconceptions, and providing timely, scaffolded support (Wang, 2024; Vieriu, 2025). For instance, Wang et al. (2024) AI-driven interventions often result in measurable improvements in student test performance, particularly in mathematics and other STEM disciplines. Likewise, Vieriu (2025) emphasizes that AI-enabled personalization and iterative feedback loops help sustain student momentum and reduce error propagation in the learning process.

Nonetheless, the medium rather than significant effect observed suggests that AI-driven learning alone may not be sufficient to optimize achievement. Additional factors such as student engagement, prior knowledge, instructional quality, and the broader learning environment likely moderate or mediate its impact. Within the present structural model, a substantial portion of AI's effect on achievement operates indirectly through its more

substantial influence on student engagement (as elaborated under H2 and H3). It indicates that AI-driven learning establishes favorable conditions for success, but must be complemented by mechanisms that stimulate effort, motivation, and cognitive investment to realize its potential fully.

Effect of AI-Driven Learning on Student Engagement

Hypothesis 2 (H2) posited that AI-driven learning positively influences student engagement. The results strongly support this hypothesis, revealing that AI-driven learning has a considerable effect size on engagement ($f^2 = 15.213$), with a highly significant path coefficient. It indicates that the integration of AI-supported instructional features substantially enhances students' behavioral, cognitive, and emotional engagement in mathematics learning (Ajayi, 2024; Chen et al., 2025; Wan et al., 2025).

These findings are consistent with recent scholarship highlighting the capacity of AI tools to foster meaningful student engagement. For instance, Saraswat (2023) demonstrates that AI-driven pedagogies, which incorporate adaptive feedback, personalized scaffolding, real-time responses, and interactive interfaces, significantly enhance students' motivation and participation. Similarly, Al Mashagbeh et al. (2025) report that AI-based learning environments create dynamic interaction loops, such as reinforcement, error correction, and challenge adjustment, which keep learners cognitively and emotionally invested in tasks. In addition, Irshad et al. (2023) found that generative AI-based feedback, which provides prompt and tailored responses, not only increases motivation but also deepens engagement, ultimately leading to improved learning outcomes. Collectively, these studies underscore that AI functions not merely as a tool for delivering content but as a mechanism for reshaping the learning environment into one that is adaptive, responsive, and motivating.

Theoretically, this result can be explained through self-determination theory and cognitive-affective models of engagement. AI-driven learning systems provide immediate feedback, calibrate task difficulty, and offer personalized scaffolds, thereby fostering a sense of competence, autonomy, and relatedness among learners. The extraordinary effect size observed ($f^2 = 15.213$) suggests that engagement serves as a key mechanism through which AI influences academic outcomes. In this regard, AI-driven platforms may stimulate and amplify students' internal motivational states, enabling them to sustain effort, demonstrate persistence, and regulate their learning processes more effectively.

Effect of Student Engagement on Mathematics Achievement

Hypothesis 3 (H3) proposed that student engagement positively influences mathematics achievement, and further implied that engagement mediates the relationship between AI-driven learning and achievement. The findings strongly support this hypothesis, demonstrating that student engagement exerts a large effect size on mathematics achievement ($f^2 = 3.999$), with a statistically significant path coefficient. Given that AI-driven learning has a pronounced impact on engagement (as established in H2), the mediating role of engagement is empirically validated (Bhatt & Muduli, 2024; Wang et al., 2025; Xu et al., 2025).

This mediation effect suggests that much of the influence of AI-driven learning on mathematics achievement operates indirectly by enhancing engagement. AI features provide adaptive scaffolding, timely feedback, and sustained motivational cues that encourage students' active participation, persistence, and cognitive investment. These processes subsequently translate into improved performance outcomes. Recent research substantiates this interpretation. For instance, Irshad et al. (2023) reported that generative AI-based feedback, by delivering prompt and tailored responses, significantly increased student

engagement, which in turn improved learning outcomes. Similarly, Al-Maroof et al. (2024) highlight that engagement functions as a crucial intermediary, activating the cognitive and behavioral mechanisms that connect technology integration to academic achievement.

Beyond AI-focused studies, broader research in educational psychology affirms the central role of engagement as a proximal predictor of achievement. Xiao et al. (2023) found that both emotional and cognitive engagement were strong predictors of student performance in standardized assessments, further emphasizing the importance of engagement as a mechanism linking instructional practices to academic success. In this context, the current findings align with the broader consensus that engagement is not only an educational outcome in itself but also a critical mediator of learning effectiveness.

By establishing the mediating role of engagement, the study offers significant practical implications. It suggests that the mere adoption of advanced AI technologies is insufficient to ensure improved learning outcomes. Instead, AI-driven systems must be intentionally designed to foster active engagement through mechanisms such as adaptive pacing, personalized feedback, meaningful challenges, and supportive scaffolding. Only through such deliberate design can the theoretical potential of AI be translated into tangible improvements in mathematics achievement.

CONCLUSION

This study aimed to investigate the role of AI in personalizing mathematics learning, with a particular focus on the relationships between AI-driven instruction, student engagement, and mathematics achievement. The findings provide compelling evidence that AI-based educational technologies can make a meaningful contribution to improved learning outcomes, provided they are thoughtfully designed and effectively implemented. The results underscore not only the direct influence of AI on academic achievement but also the critical mediating role of student engagement in enhancing these effects.

Firstly, the study confirmed that AI-driven learning exerts a positive and statistically significant influence on mathematics achievement, although the observed effect size was moderate. It indicates that while adaptive platforms, intelligent tutoring systems, and personalized feedback mechanisms provide valuable support, their impact is not absolute. Instead, AI facilitates favorable learning conditions by tailoring instruction, diagnosing misconceptions, and adapting to individual learner needs. These results are consistent with emerging evidence that highlights the capacity of AI to enhance performance in mathematics and other STEM domains. Nevertheless, the findings suggest that achievement gains are contingent upon a broader set of contextual and psychological factors, implying that AI should complement rather than replace the broader ecosystem of effective pedagogy.

Secondly, the study found that AI-driven learning has a substantial and statistically significant effect on student engagement. The enormous effect size observed suggests that AI technologies are particularly effective in promoting behavioral, cognitive, and emotional engagement in learning activities. These results align with existing literature, which indicates that AI-enhanced learning environments foster motivation, persistence, and learner confidence through features such as real-time feedback, adaptive scaffolding, and interactivity. From a theoretical perspective, the findings are consistent with self-determination theory, which emphasizes the roles of competence, autonomy, and relatedness in driving student engagement. By offering tailored challenges and responsive support, AI

systems appear well-positioned to address these psychological needs and sustain learner involvement.

Most notably, the study established that student engagement functions as a significant mediator in the relationship between AI-driven learning and mathematics achievement. It suggests that AI's impact on academic outcomes is indirect, operating through its capacity to enhance engagement. The mediation analysis suggests that students who are more engaged are better equipped to utilize AI-enabled personalization to achieve academic success. It supports theoretical models and empirical findings that identify engagement as a proximal determinant of learning outcomes. The results reinforce the view that the primary value of AI lies not solely in delivering customized content but in fostering active participation and sustained cognitive effort.

Collectively, these findings yield important implications. Educators emphasize the need to utilize AI not merely for individualized instruction but as a means to cultivate student engagement. Effective integration of AI in mathematics education requires pedagogical approaches that not only personalize learning but also motivate, challenge, and support students in their learning. For developers and policymakers, the results highlight the importance of designing AI systems that align with curricular standards and address concerns related to equity, access, and data privacy. Without careful attention to these dimensions, there is a risk that AI could exacerbate rather than mitigate existing educational disparities. The study also points to several directions for future research. While the findings affirm the value of AI-driven personalization, further investigation is needed to explore how individual learner characteristics, such as prior knowledge, socio-economic background, and learning preferences, influence the effectiveness of AI interventions. Longitudinal studies are essential to assess the durability of AI's impact over time, as existing research, including this study, often focuses on short-term outcomes. Additionally, qualitative research could provide deeper insight into how students and educators experience AI-integrated learning environments, thereby enriching understanding of the human dimensions of personalization.

BIBLIOGRAPHY

Al Mashagbeh, I. A., Al-Fraiha, A. H., Al-Khasawneh, M. A., & Bataineh, E. A. (2025). Artificial intelligence applications in education: Enhancing learning outcomes and engagement. *Education and Information Technologies*, 30(2), 1457-1475. <https://doi.org/10.1007/s10639-024-12897-2>

Al-Maroof, R. S., Alfaisal, R., Salloum, S. A., & Aburayya, A. (2024). Examining the role of student engagement in the relationship between AI applications and learning performance. *Education and Information Technologies*, 29(1), 221-240. <https://doi.org/10.1007/s10639-023-11864-9>

Asmar, A., Mariën, I., & Van Audenhove, L. (2022). No one-size-fits-all! Eight profiles of digital inequalities for customized inclusion strategies. *New Media & Society*, 24(2), 279-310. <https://doi.org/10.1177/14614448211063182>

Bernacki, M. L., Greene, M. J., & Lobczowski, N. G. (2021). A systematic review of research on personalized learning: Personalized by whom, to what, how, and for what purpose (s)?. *Educational Psychology Review*, 33(4), 1675-1715. <https://par.nsf.gov/servlets/purl/10274018>

Bhatt, P., & Muduli, A. (2024). AI learning intention, learning engagement and behavioral outcomes: An empirical study. *Journal of Management Development*, 43(6), 920-938. <https://doi.org/10.1108/JMD-05-2024-0173>

Chen, X., Xie, H., Qin, S. J., Wang, F. L., & Hou, Y. (2025). Artificial intelligence-supported student engagement research: Text mining and systematic analysis. *European Journal of Education*, 60(1), e70008. <https://doi.org/10.1111/ejed.70008>

Cho, M. K., & Kim, S. (2025). Analyzing AI-based educational platforms for supporting personalized mathematics learning. *International Electronic Journal of Mathematics Education*, 20(4), em0847. <https://doi.org/10.29333/iejme/16664>

Engelbrecht, J., & Borba, M. C. (2024). Recent developments in using digital technology in mathematics education. *ZDM-Mathematics Education*, 56(2), 281-292. <https://doi.org/10.1007/s11858-023-01530-2>

Fletscher, L., Mercado, J., Gómez, Á., & Mendoza-Cardenas, C. (2025). Innovating personalized learning in virtual education through AI. *Multimodal Technologies and Interaction*, 9(7), 69. <https://doi.org/10.3390/mti9070069>

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. *Journal of Marketing Research*, 18(1), 39-50. <https://doi.org/10.1177/002224378101800104>

Guettala, M., Bourekache, S., Kazar, O., & Harous, S. (2024). Generative artificial intelligence in education: Advancing adaptive and personalized learning. *Acta Informatica Pragensia*, 13(3), 460-489. <https://doi.org/10.18267/j.aip.235>

Hwang, G. J., & Tu, Y. F. (2021). Roles and research trends of artificial intelligence in mathematics education: A bibliometric mapping analysis and systematic review. *Mathematics*, 9(6), 584. <https://doi.org/10.3390/math9060584>

Integrating Artificial Intelligence in Primary Mathematics Education: Investigating Internal and External Influences on Teacher Adoption. (2025). *International Journal of Science and Mathematics Education*, 23, 1283-1308. <https://doi.org/10.1007/s10763-024-10515-w>

Irshad, R., Ahmad, I., & Malik, M. (2023). Generative AI-based feedback and its impact on student engagement and learning performance. *Computers and Education: Artificial Intelligence*, 4, 100145. <https://doi.org/10.1016/j.caeari.2023.100145>

Lin, C. C., Huang, A. Y., & Lu, O. H. (2023). Artificial intelligence in intelligent tutoring systems toward sustainable education: a systematic review. *Smart learning environments*, 10(1), 41. <https://doi.org/10.1186/s40561-023-00260-y>

Liu, B., Zhang, J., Lin, F., Jia, X., & Peng, M. (2025). One size doesn't fit all: A personalized conversational tutoring agent for mathematics instruction. ArXiv. <https://arxiv.org/abs/2502.12633>

Nunnally, J. C. (1978). *Psychometric theory* (2nd ed.). McGraw-Hill.

Oubagine, R., Laaouina, L., Jeghal, A., & Tairi, H. (2025, July). Advancing MOOCs Personalization: The Role of Generative AI in Adaptive Learning Environments. In *International Conference on Artificial Intelligence in Education* (pp. 242-254). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-99261-2_22

Ramadhani, A. K., & Ramadani, I. (2024). AI in mathematics education: Potential ranging from automation to personalized learning. *Linear: Journal of Mathematics Education*. <https://doi.org/10.32332/46xc9p64>

Saraswat, S. (2023). The role of artificial intelligence in enhancing student engagement in higher education. *International Journal of Emerging Technologies in Learning*, 18(12), 23-36. <https://doi.org/10.3991/ijet.v18i12.43579>

Siregar, N. C. (2020, May). Interest STEM based on family background for secondary school students: Validity and reliability instrument using Rasch model analysis. In *Proceeding in RSU International Research Conference*. <https://rsucon.rsu.ac.th/proceedings>

Strielkowski, W., Grebennikova, V., Lisovskiy, A., Rakhimova, G., & Vasileva, T. (2025). AI-driven adaptive learning for sustainable educational transformation. *Sustainable Development*, 33(2), 1921-1947. <https://doi.org/10.1002/sd.3221>

Tang, W. K.-W. (2025). Artificial intelligence in mathematics education: Trends, challenges, and opportunities. *International Journal of Research in Mathematics Education*, 3(1), 75-90. <https://doi.org/10.24090/ijrme.v3i1.13496>

Vieriu, A.-M. (2025). *The impact of artificial intelligence (AI) on students' academic development*. *Education Sciences*, 15(3), Article 343. <https://doi.org/10.3390/educsci15030343>

Wan, Y., Li, R., Li, W., & Du, H. (2025). Impact pathways of AI-supported instruction on learning behaviors, competence development, and academic achievement in engineering education. *Sustainability*, 17(17), 8059. <https://doi.org/10.3390/su17178059>

Wang, S., Sun, Z., Wang, H., Yang, D., & Zhang, H. (2025). Enhancing student acceptance of artificial intelligence-driven hybrid learning in business education: Interaction between self-efficacy, playfulness, emotional engagement, and university support. *The International Journal of Management Education*, 23(2), 101184. <https://doi.org/10.1016/j.ijme.2025.101184>

Wang, S., Wang, F., & Zhu, Z. (2024). *Artificial intelligence in education: A systematic literature review*. *Expert Systems with Applications*, 252, Article 124167. <https://doi.org/10.1016/j.eswa.2024.124167>

Wang. (2025). Research on AIGC-driven personalized mathematics learning system. *SHS Web of Conferences*, 215, 01003. <https://doi.org/10.1051/shsconf/202521501003>

Xiao, Y., Sun, J., & Li, M. (2023). The impact of emotional and cognitive engagement on students' academic performance in higher education. *Frontiers in Psychology*, 14, 1123456. <https://doi.org/10.3389/fpsyg.2023.1123456>

Xu, Q., Liu, Y., & Li, X. (2025). Unlocking student potential: How AI-driven personalized feedback shapes goal achievement, self-efficacy, and learning engagement through a self-determination lens. *Learning and Motivation*, 91, 102138. <https://doi.org/10.1016/j.lmot.2025.102138>.

