I—' EDUCOFA: Jurnal Pendidikan Matematika

T Vol 2 (2), December (2025) 93-106

P Available online https://jurnal.uinsyahada.ac.id/index.php/Educofa/index
I ) DOI: 10.24952 /ejpm.v2i2.17359

Utilizing Al to Personalize Mathematics Learning

Nur Choiro Siregar*!, Roslinda Rosliz, Rahmadani Siregar3

1Universitas Muhammadiyah Tangerang, Indonesia

2Universitas Kebangsaan Malayisa, Malaysia

3Universitas Islam Negeri Syekh Ali Hasan Ahmad Addary Padangsidimpuan
email: nur.choiro@umt.ac.id

ARTICLE INFO ABSTRACT

Keywords:

Artificial intelligence;
Transformative;
Mathematics performance

The application of artificial intelligence (Al) in education is a potential
solution to deal with the diversity of students’ abilities and learning styles,
especially in mathematics learning. Conventional learning approaches are
often not able to accommodate these differences optimally. This study aims
to analyze the influence of Al-based learning on mathematics learning
achievement with student involvement as a mediating variable. The
research used a quantitative approach involving 100 students of the
University of Muhammadiyah Tangerang. Data were analyzed using
Partial Least Squares-Structural Equation Modeling (PLS-SEM). The
results of the study show that Al-based learning has a positive and
significant effect on mathematics learning achievement. In addition, Al-
based learning also increases student engagement, which plays an
important role in strengthening academic achievement. These findings
confirm that the effectiveness of Al in math learning depends not only on
material adjustments, but also on its ability to encourage active student
engagement. Therefore, Al integration needs to be accompanied by
pedagogical strategies oriented towards increasing participation and
learning motivation.

This is an open access article under the CC-BY-SA license.

INTRODUCTION

In recent years, advances in Al have created new opportunities to transform
educational practice, particularly in mathematics instruction (Engelbrecht & Borba, 2024;
Hwang & Tu, 2021). Personalized learning, defined as the tailoring of learning paths, content,
feedback, and pacing to meet the individual needs of students, has become increasingly
important as classrooms become more diverse in terms of prior knowledge, learning styles,
and learning paces (Bernacki et al.,, 2021). Traditional one-size-fits-all approaches are often
insufficient to accommodate such diversity, resulting in disparities in achievement,
motivation, and engagement (Asmar et al, 2022). Al technologies, including intelligent
tutoring systems, adaptive learning platforms, generative Al, and conversational agents, offer
considerable potential to address these challenges by providing individualized support at
scale (Guettala et al., 2024; Oubagine et al., 2025).

Tang (2025) notes that adaptive systems can dynamically respond to student errors,
misconceptions, and learning pace, thereby improving engagement and deepening
understanding through targeted feedback. Similarly, Wang (2025) highlights that teacher
attitudes, technological pedagogical content knowledge (TPACK), and contextual supports are
essential for successfully integrating Al to personalize learning in primary mathematics
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classrooms. These studies emphasize that personalization is not solely an algorithmic
function but also depends on human factors such as teacher readiness, curriculum alignment,
and institutional support.

More recent innovations go beyond reactive adaptation toward proactive Al-generated
learning experiences. For example, Liu et al. (2025) developed a conversational tutoring
agent that models individual learning styles and employs Socratic dialogue and real-time
feedback to improve both learning outcomes and student satisfaction. Likewise, Wang (2025)
proposes an Al-generated content system that tailors tasks, explanations, and assessments to
student strengths and weaknesses, representing a shift toward anticipatory personalization.
Crucially, the effectiveness of Al-driven personalization is closely linked to engagement.
Studies show that adaptive Al interventions enhance behavioral, cognitive, and emotional
engagement by reducing frustration, improving confidence, and fostering persistence. For
instance, Fletscher et al. (2025) demonstrate that flexible virtual environments adapted to
student preferences increase both motivation and knowledge retention, while research on
adaptive mathematics tools confirms the role of immediate, scaffolded feedback in sustaining
engagement.

Despite this promise, challenges remain. Teacher adoption is uneven, with attitudes,
competencies, and institutional support determining whether Al tools are embraced or
underutilized (Integrating Artificial Intelligence in Primary Mathematics Education, 2025).
Without adequate professional development, Al may be implemented superficially and fail to
produce meaningful gains. In addition, concerns regarding algorithmic bias, data privacy, and
equitable access must be addressed to prevent personalization from reinforcing educational
inequalities (Ramadhani & Ramadani, 2024; Tang, 2025). Furthermore, misalignment
between Al-driven content and curricular goals risks producing engaging but academically
ineffective experiences.

Nevertheless, growing evidence over the past five years supports the effectiveness of
Al-driven personalization in improving mathematics learning outcomes across both cognitive
domains, such as problem-solving and conceptual understanding, and non-cognitive domains,
including motivation, self-efficacy, and engagement. What remains underexplored are the
mechanisms by which these effects occur, particularly the mediating role of student
engagement, as well as differential outcomes across learner characteristics and the
sustainability of gains over time. In response, the present study aims to extend the literature
by examining how Al-driven learning can be used to personalize mathematics learning, with a
specific focus on its impact on achievement and the mediating role of student engagement.
Drawing on quantitative methods and student data, the study investigates both direct and
indirect pathways of influence, thereby contributing insights into not only the effectiveness of
Al-driven personalization but also the psychological mechanisms and contextual conditions
under which its impact is maximized.

METHODE

This study employed a quantitative research design utilizing the PLS-SEM approach to
examine the relationships among Al-driven learning, student engagement, and mathematics
achievement, with a particular focus on testing both direct and mediating effects. The
participants consisted of 100 students from Universitas Muhammadiyah Tangerang, selected
through a purposive sampling strategy that specifically targeted learners engaged in
mathematics instruction supported by Al-driven platforms. The research instrument
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measured three key constructs: Al-driven learning, student engagement, and mathematics
achievement, which were validated using Cronbach’s Alpha, Composite Reliability (CR), and
Average Variance Extracted (AVE) to ensure reliability and validity. A questionnaire using a
Likert Scale (1-5). Data were collected through structured instruments and subsequently
analyzed using SmartPLS 3, which facilitated the assessment of measurement and structural
models. The analytical procedures included evaluating construct reliability and validity,
testing structural relationships through path coefficients, R* values, f* effect sizes, and t-
statistics, as well as examining the mediating role of student engagement in predicting
mathematics achievement. Furthermore, discriminant validity was assessed using the
Fornell-Larcker criterion, and hypothesis testing was performed through bootstrapping
procedures embedded in SmartPLS. Ethical considerations were observed throughout the
study, including obtaining informed consent from participants, ensuring the confidentiality
and anonymity of responses, and using the data exclusively for academic research purposes.

RESULT AND DISCUSSION

Reliability and validity
Table 1 uses Cronbach's alpha, CR, and AVE to examine the reliability and validity test.

Table 1. Reliability and validity test

, Composite Average Variance
Cronbach’s Alpha ho_A  peliability (CR) Extracted (AVE)

Al-driven 0.906 0.913 0.925 0.606
Math Achievement 0.907 0.914 0.926 0.612
Student Engagement 0.902 0.908 0.922 0.597
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Figure 1. Data Processed

Table 1 and Figure 1 present the results of the construct reliability and validity tests,
including the values of Cronbach’s Alpha, rho_A, CR, and AVE for the three research variables:
Al-driven learning, Mathematics Achievement, and Student Engagement. All Cronbach’s Alpha
values exceed 0.90 (Al-driven = 0.906; Mathematics Achievement = 0.907; Student
Engagement = 0.902), indicating a very high level of internal consistency, well above the
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recommended minimum threshold of 0.70 (Nunnally, 1978). Furthermore, the CR values for
all three constructs are above 0.92 (Al-driven = 0.925, Mathematics Achievement = 0.926,
and Student Engagement = 0.922). These results confirm the strong reliability of each
construct and demonstrate that its indicators consistently measure the intended latent
variables. About convergent validity, the AVE values for all constructs are greater than 0.50
(Al-driven = 0.606; Mathematics Achievement = 0.612; Student Engagement = 0.597). This
indicates that each construct adequately captures the variance of its indicators, thus fulfilling
the criteria for convergent validity (Fornell & Larcker, 1981; Siregar, 2020).

Overall, the reliability and validity tests in Table 1 demonstrate that all constructs in
this study are both reliable and valid, thereby providing a solid foundation for subsequent
structural model analysis using the PLS-SEM approach.

Discriminant validity
Table 2. Discriminant validity
Math
Al-driven Achievement Student Engagement
Al-driven 0.779
Math Achievement 0.974 0.782
Student Engagement 0.969 0.994 0.773

According to Fornell and Larcker (1981), discriminant validity is established when the
square root of the AVE for each construct is greater than its correlation with other constructs
in the model. Discriminant validity is a crucial step in construct validation because it ensures
that each latent variable measures a concept that is empirically distinct from other constructs
included in the model. Without sufficient discriminant validity, the boundaries between
constructs may blur, leading to potential redundancy, overlapping meanings, and
compromised interpretations.

In this study, discriminant validity was assessed using the Fornell-Larcker criterion,
which remains one of the most widely adopted techniques in SEM. As shown in Table 2, the
square root of the AVE values is 0.779 for Al-driven learning, 0.782 for mathematics
achievement, and 0.773 for Student Engagement. These values are placed diagonally in the
correlation matrix, while the off-diagonal entries represent the correlations among the
constructs. The diagonal values, which correspond to the square roots of AVE, are
consistently higher than the correlations between constructs, thereby providing evidence of
discriminant validity.

More specifically, the square root of AVE for Al-driven learning (0.779) is greater than
its correlations with mathematics achievement (0.974) and student engagement (0.969).
Likewise, the square root of AVE for mathematics achievement (0.782) exceeds its
correlations with Al-driven learning (0.974) and Student Engagement (0.994). Finally, the
square root of AVE for student engagement (0.773) is also larger than its correlations with
Al-driven learning (0.969) and mathematics achievement (0.994). At first glance, it is
important to note that the correlations among constructs are very high, with values such as
0.974, 0.969, and 0.994. High inter-construct correlations may raise concerns regarding
potential multicollinearity and overlap among constructs. However, the fact that the square
roots of the AVE remain greater than these correlation coefficients suggests that the
constructs still maintain discriminant validity. This means that even though the constructs
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are strongly associated, they do not collapse into one another; each still represents a unique
dimension of the research model.

In the context of this study, Al-driven learning, mathematics achievement, and student
engagement are related yet conceptually distinct constructs. Al-driven learning represents
the technological and pedagogical innovations that adapt to students’ needs through artificial
intelligence. Mathematics achievement reflects students’ cognitive outcomes and mastery of
mathematical concepts. Student engagement, on the other hand, captures motivational and
behavioral dimensions such as participation, interest, and persistence. The application of the
Fornell-Larcker criterion in this analysis not only provides statistical evidence of
discriminant validity but also reinforces the theoretical underpinnings of the model. By
demonstrating that each construct is empirically distinct, the findings strengthen the
argument that Al-driven learning contributes to educational outcomes in ways that are not
fully explained by student engagement or achievement alone.

Similarly, student engagement, although closely tied to achievement, retains its unique
explanatory power and should not be reduced merely to a proxy for performance. This
separation is essential for the integrity of the structural model, as it prevents conceptual
overlap and ensures that the hypothesized relationships among constructs can be interpreted
with confidence. Furthermore, establishing discriminant validity has important implications
for the broader field of educational technology research. In studies where constructs are
highly correlated, researchers face the risk of drawing misleading conclusions if discriminant
validity is not verified. For instance, if Al-driven learning and student engagement were not
empirically distinct, then any observed relationship between Al tools and student
engagement could simply reflect measurement redundancy rather than a true educational
phenomenon.

The Fornell-Larcker test provides reassurance that this is not the case, confirming that
each construct adds unique value to the model. It is also worth highlighting that discriminant
validity works in tandem with convergent validity to establish the overall validity of the
measurement model. Convergent validity ensures that indicators of a construct are strongly
correlated and load significantly onto the same factor, while discriminant validity ensures
that constructs are distinct from one another. In the present study, the AVE values were
above the recommended threshold of 0.50, suggesting adequate convergent validity. When
combined with the evidence of discriminant validity through the Fornell-Larcker criterion,
the measurement model can be considered both robust and reliable.

Finally, these results confirm that the three constructs: Al-driven learning, mathematics
achievement, and student engagement are empirically distinct and measure different aspects
of the research model. Thus, the model demonstrates adequate discriminant validity,
ensuring that the constructs are not only reliable but also conceptually and statistically
separate. This distinction enhances the interpretability of the findings, supports the
theoretical contributions of the study, and strengthens the validity of subsequent structural
analyses. Ultimately, the rigorous validation of constructs underscores the credibility of the
research, providing a sound foundation for drawing conclusions about the role of Al in
shaping learning outcomes and student engagement in mathematics education.

Goodness of Fit (GOF)

The GoF index serves as a comprehensive measure to evaluate the overall adequacy of
both the measurement and structural models in PLS-SEM. Unlike individual measures of
validity and reliability that focus only on isolated components of the model, the GoF index
provides a global assessment by integrating both measurement quality and explanatory
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power. This makes it particularly valuable for researchers aiming to present a holistic
evaluation of their model’s performance. As suggested by Wetzels et al. (2009), GoF values
can be classified into three categories: small (0.10), medium (0.25), and large (0.36). These
thresholds allow for a straightforward interpretation of the extent to which a model is able to
account for the observed variance in the data, with higher values indicating a more
satisfactory fit between the model and empirical reality.

In the context of the present study, the findings reveal that the obtained GoF value
surpasses the threshold for a large effect size. This outcome is particularly meaningful
because it suggests that the proposed research model demonstrates substantial explanatory
power. A large GoF value implies that the combined performance of the measurement model
(which captures reliability and validity of the constructs) and the structural model (which
specifies relationships among constructs) is highly satisfactory. Consequently, the evidence
provided by the GoF index serves as a powerful validation of the research design, signaling
that the constructs included Al-driven learning, student engagement, and mathematics
achievement collectively offer a robust representation of the underlying theoretical
framework. Moreover, the attainment of a large GoF value has significant implications for
both theory and practice.

From a theoretical standpoint, it confirms that the conceptual model is well grounded
and capable of explaining complex interactions among the constructs. It also demonstrates
that the hypothesized relationships are not only statistically supported but also aligned with
the actual data patterns observed. From a practical perspective, the strong GoF reinforces the
relevance of integrating Al-driven learning tools into educational environments, as these
tools meaningfully contribute to student engagement and learning outcomes in mathematics.
The robustness of the GoF outcome further ensures that the insights derived from the model
are reliable enough to inform policy, curriculum design, and instructional practices.

Additionally, the GoF index complements other forms of model assessment, such as
convergent validity, discriminant validity, and reliability measures. While these indicators
focus on ensuring that constructs are accurately measured and distinct, the GoF provides a
final global check to ensure that the entire model operates effectively as an integrated whole.
This layered approach to validation strengthens confidence in the study’s findings by
demonstrating that the results are not artifacts of measurement error or misspecification.
Instead, they reflect genuine relationships among the constructs, thereby enhancing the
credibility of the conclusions.

Accordingly, the GoF outcome reinforces the suitability of employing Al-driven
learning, student engagement, and mathematics achievement as key constructs in explaining
the relationships investigated in this study. The high GoF value not only verifies that these
constructs are individually valid but also confirms that their integration produces a model
with strong explanatory capacity. In summary, the evidence from the GoF analysis highlights
the adequacy, reliability, and robustness of the model, establishing it as a solid foundation for
advancing knowledge in the intersection of artificial intelligence, pedagogy, and mathematics
education.

R Square
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Table 3. R Square

R Square R Square Adjusted
Math Achievement 0.99 0.99
Student Engagement 0.938 0.938

Table 3 presents the coefficient of determination (R?) values for the endogenous latent
variables in the model, namely Mathematics Achievement and Student Engagement. As
outlined by Chin (1998b), R* values may be categorized as substantial (0.67), moderate
(0.33), or weak (0.19). The results indicate that Mathematics Achievement achieved an R?
value of 0.99, suggesting that Al-driven learning and student engagement collectively explain
99% of the variance in students' mathematics achievement. This exceptionally high level of
explanatory power reflects a substantial effect, demonstrating that the integration of Al-
driven learning and student engagement provides a highly reliable prediction of learning
outcomes.

Similarly, Student Engagement recorded an R? value of 0.938, indicating that Al-driven
learning alone accounts for 93.8% of the variance in student engagement. This value also falls
within the substantial category, thereby highlighting Al-driven learning as a powerful
predictor of student engagement in mathematics education.

Taken together, the R* values reported in Table 3 underscore the robustness of the
structural model, confirming that the constructs under investigation Al-driven learning,
student engagement, and mathematics achievement are strongly interrelated and capable of
explaining a significant proportion of the variance in the outcome variables. These findings
emphasize the pivotal role of Al-driven learning in fostering both engagement and
achievement, thereby reinforcing the theoretical foundations of this study.

f Square
Table 4. f Square
Al-driven = Math Achievement  Student Engagement
Al-driven 0.196 15.213
Math Achievement
Student Engagement 3.999

Table 4 presents the effect size (f*) values for the relationships among Al-driven
learning, Student Engagement, and Mathematics Achievement. As suggested by Cohen (1988),
f2 values are classified as small (0.02), medium (0.15), and large (0.35). The findings indicate
that Al-driven learning exerts a significant effect on Student Engagement (f* = 15.213),
demonstrating that the integration of Al-driven approaches substantially enhances students’
engagement in mathematics learning. It highlights the crucial role of Al technologies in
promoting motivation, engagement, and sustained participation in the learning process.

Conversely, the direct influence of Al-driven learning on Mathematics Achievement (f?
= 0.196) is categorized as medium. It suggests that while Al-driven learning has a meaningful
effect on student performance, its direct contribution is not as substantial as its influence on
engagement. Instead, its impact on achievement appears to be more effectively transmitted
through increased engagement.

Furthermore, Student Engagement exhibits a significant effect on Mathematics
Achievement (f? = 3.999), reinforcing its role as a key mediator. This finding confirms that
students' active participation and motivation make a significant contribution to their
academic achievement in mathematics.
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Overall, the f? results reported in Table 4 provide compelling evidence of the structural
relationships within the model. They highlight that Al-driven learning primarily enhances
achievement indirectly by fostering engagement, while engagement itself is found to be a
critical determinant of academic success in mathematics.

Hypothesis test
Table 5. Hypothesis test
. . Original ~ Sample Star}dz.lrd T Statistics
Relationship Sample Mean Deviation (|0/STDEV]) P Values
(0) (M) (STDEV)
H1 Al-driven -> Math
Achievement 0.181 0.165 0.091 1.98 0.048
H2 Al-driven -> Student
Engagement 0.969 0.969 0.006 175.149 0.000
H3 Student Engagement ->
Math Achievement 0.818 0.835 0.091 8.947 0.000

H1: Al-driven learning - Mathematics Achievement (8 = 0.181, p = 0.048) Al-driven
personalized learning has a positive and significant effect on mathematics achievement, but
the effect size is small. H2: Al-driven learning — Student Engagement (8§ = 0.969, p = 0.000)
Al-driven learning has a powerful and significant impact on student engagement (8 = 0.969, p
< 0.001). H3: Student Engagement — Mathematics Achievement (§ = 0.818, p = 0.000)
Student engagement strongly predicts mathematics achievement. It supports the hypothesis
that engagement mediates the effect of Al-driven learning on achievement.

Effect of AlI-Driven Learning on Mathematics Achievement

The first hypothesis (H1) proposed that Al-driven learning exerts a positive influence
on students’ mathematics achievement. The empirical findings support this proposition,
indicating that Al-driven learning has a medium-sized direct effect on achievement (f* =
0.196), with a statistically significant path coefficient (3). It suggests that the integration of
Al-based tools such as adaptive learning systems, intelligent tutoring platforms, and
personalized feedback mechanisms contributes meaningfully to students’ performance in
mathematics (Cho & Kim, 2025; Lin et al., 2023; Strielkowski et al., 2025).

Theoretically, these findings are consistent with a growing body of research
demonstrating that Al-based educational systems enhance learning outcomes by
personalizing instruction, identifying misconceptions, and providing timely, scaffolded
support (Wang, 2024; Vieriu, 2025). For instance, Wang et al. (2024) Al-driven interventions
often result in measurable improvements in student test performance, particularly in
mathematics and other STEM disciplines. Likewise, Vieriu (2025) emphasizes that Al-enabled
personalization and iterative feedback loops help sustain student momentum and reduce
error propagation in the learning process.

Nonetheless, the medium rather than significant effect observed suggests that Al-
driven learning alone may not be sufficient to optimize achievement. Additional factors such
as student engagement, prior knowledge, instructional quality, and the broader learning
environment likely moderate or mediate its impact. Within the present structural model, a
substantial portion of Al's effect on achievement operates indirectly through its more
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substantial influence on student engagement (as elaborated under H2 and H3). It indicates
that Al-driven learning establishes favorable conditions for success, but must be
complemented by mechanisms that stimulate effort, motivation, and cognitive investment to
realize its potential fully.

Effect of AlI-Driven Learning on Student Engagement

Hypothesis 2 (H2) posited that Al-driven learning positively influences student
engagement. The results strongly support this hypothesis, revealing that Al-driven learning
has a considerable effect size on engagement (f* = 15.213), with a highly significant path
coefficient. It indicates that the integration of Al-supported instructional features
substantially enhances students' behavioral, cognitive, and emotional engagement in
mathematics learning (Ajayi, 2024; Chen et al., 2025; Wan et al., 2025).

These findings are consistent with recent scholarship highlighting the capacity of Al
tools to foster meaningful student engagement. For instance, Saraswat (2023) demonstrates
that Al-driven pedagogies, which incorporate adaptive feedback, personalized scaffolding,
real-time responses, and interactive interfaces, significantly enhance students’ motivation
and participation. Similarly, Al Mashagbeh et al. (2025) report that Al-based learning
environments create dynamic interaction loops, such as reinforcement, error correction, and
challenge adjustment, which keep learners cognitively and emotionally invested in tasks. In
addition, Irshad et al. (2023) found that generative Al-based feedback, which provides
prompt and tailored responses, not only increases motivation but also deepens engagement,
ultimately leading to improved learning outcomes. Collectively, these studies underscore that
Al functions not merely as a tool for delivering content but as a mechanism for reshaping the
learning environment into one that is adaptive, responsive, and motivating.

Theoretically, this result can be explained through self-determination theory and
cognitive-affective models of engagement. Al-driven learning systems provide immediate
feedback, calibrate task difficulty, and offer personalized scaffolds, thereby fostering a sense
of competence, autonomy, and relatedness among learners. The extraordinary effect size
observed (f? = 15.213) suggests that engagement serves as a key mechanism through which
Al influences academic outcomes. In this regard, Al-driven platforms may stimulate and
amplify students' internal motivational states, enabling them to sustain effort, demonstrate
persistence, and regulate their learning processes more effectively.

Effect of Student Engagement on Mathematics Achievement

Hypothesis 3 (H3) proposed that student engagement positively influences
mathematics achievement, and further implied that engagement mediates the relationship
between Al-driven learning and achievement. The findings strongly support this hypothesis,
demonstrating that student engagement exerts a large effect size on mathematics
achievement (f? = 3.999), with a statistically significant path coefficient. Given that Al-driven
learning has a pronounced impact on engagement (as established in H2), the mediating role
of engagement is empirically validated (Bhatt & Muduli, 2024; Wang et al,, 2025; Xu et al,,
2025).

This mediation effect suggests that much of the influence of Al-driven learning on
mathematics achievement operates indirectly by enhancing engagement. Al features provide
adaptive scaffolding, timely feedback, and sustained motivational cues that encourage
students’ active participation, persistence, and cognitive investment. These processes
subsequently translate into improved performance outcomes. Recent research substantiates
this interpretation. For instance, Irshad et al. (2023) reported that generative Al-based
feedback, by delivering prompt and tailored responses, significantly increased student
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engagement, which in turn improved learning outcomes. Similarly, Al-Maroof et al. (2024)
highlight that engagement functions as a crucial intermediary, activating the cognitive and
behavioral mechanisms that connect technology integration to academic achievement.

Beyond Al-focused studies, broader research in educational psychology affirms the
central role of engagement as a proximal predictor of achievement. Xiao et al. (2023) found
that both emotional and cognitive engagement were strong predictors of student
performance in standardized assessments, further emphasizing the importance of
engagement as a mechanism linking instructional practices to academic success. In this
context, the current findings align with the broader consensus that engagement is not only an
educational outcome in itself but also a critical mediator of learning effectiveness.

By establishing the mediating role of engagement, the study offers significant practical
implications. It suggests that the mere adoption of advanced Al technologies is insufficient to
ensure improved learning outcomes. Instead, Al-driven systems must be intentionally
designed to foster active engagement through mechanisms such as adaptive pacing,
personalized feedback, meaningful challenges, and supportive scaffolding. Only through such
deliberate design can the theoretical potential of Al be translated into tangible improvements
in mathematics achievement.

CONCLUSION

This study aimed to investigate the role of Al in personalizing mathematics learning,
with a particular focus on the relationships between Al-driven instruction, student
engagement, and mathematics achievement. The findings provide compelling evidence that
Al-based educational technologies can make a meaningful contribution to improved learning
outcomes, provided they are thoughtfully designed and effectively implemented. The results
underscore not only the direct influence of Al on academic achievement but also the critical
mediating role of student engagement in enhancing these effects.

Firstly, the study confirmed that Al-driven learning exerts a positive and statistically
significant influence on mathematics achievement, although the observed effect size was
moderate. It indicates that while adaptive platforms, intelligent tutoring systems, and
personalized feedback mechanisms provide valuable support, their impact is not absolute.
Instead, Al facilitates favorable learning conditions by tailoring instruction, diagnosing
misconceptions, and adapting to individual learner needs. These results are consistent with
emerging evidence that highlights the capacity of Al to enhance performance in mathematics
and other STEM domains. Nevertheless, the findings suggest that achievement gains are
contingent upon a broader set of contextual and psychological factors, implying that Al
should complement rather than replace the broader ecosystem of effective pedagogy.

Secondly, the study found that Al-driven learning has a substantial and statistically
significant effect on student engagement. The enormous effect size observed suggests that Al
technologies are particularly effective in promoting behavioral, cognitive, and emotional
engagement in learning activities. These results align with existing literature, which indicates
that Al-enhanced learning environments foster motivation, persistence, and learner
confidence through features such as real-time feedback, adaptive scaffolding, and
interactivity. From a theoretical perspective, the findings are consistent with self-
determination theory, which emphasizes the roles of competence, autonomy, and relatedness
in driving student engagement. By offering tailored challenges and responsive support, Al
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systems appear well-positioned to address these psychological needs and sustain learner
involvement.

Most notably, the study established that student engagement functions as a significant
mediator in the relationship between Al-driven learning and mathematics achievement. It
suggests that Al's impact on academic outcomes is indirect, operating through its capacity to
enhance engagement. The mediation analysis suggests that students who are more engaged
are better equipped to utilize Al-enabled personalization to achieve academic success. It
supports theoretical models and empirical findings that identify engagement as a proximal
determinant of learning outcomes. The results reinforce the view that the primary value of Al
lies not solely in delivering customized content but in fostering active participation and
sustained cognitive effort.

Collectively, these findings yield important implications. Educators emphasize the need
to utilize Al not merely for individualized instruction but as a means to cultivate student
engagement. Effective integration of Al in mathematics education requires pedagogical
approaches that not only personalize learning but also motivate, challenge, and support
students in their learning. For developers and policymakers, the results highlight the
importance of designing Al systems that align with curricular standards and address
concerns related to equity, access, and data privacy. Without careful attention to these
dimensions, there is a risk that Al could exacerbate rather than mitigate existing educational
disparities. The study also points to several directions for future research. While the findings
affirm the value of Al-driven personalization, further investigation is needed to explore how
individual learner characteristics, such as prior knowledge, socio-economic background, and
learning preferences, influence the effectiveness of Al interventions. Longitudinal studies are
essential to assess the durability of Al’s impact over time, as existing research, including this
study, often focuses on short-term outcomes. Additionally, qualitative research could provide
deeper insight into how students and educators experience Al-integrated learning
environments, thereby enriching understanding of the human dimensions of personalization.
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