EXPLORING ARTIFICIAL INTELLIGENCE IN ARABIC LANGUAGE LEARNING IN HIGHER EDUCATION
This study investigates the implementation of Artificial Intelligence (AI) in the Arabic Language Content Development Curriculum at a higher education institution, grounded in a constructivist theoretical framework. The primary aim of the study is to analyze changes in students’ learning outcomes who took a course before and after the AI implementation, and to examine the influence of confounding variables such as age, gender, origin school/region, and core subject on improvements in Arabic language learning outcomes. The research design is a true experimental design with a single experimental group applied to students in the Arabic Language and Literature program. Participants met inclusion criteria with a minimum sample size of 32 respondents. Data were collected through pretests and posttests, questionnaires, observations, and focused interviews. The instruments included sentence-construction items with difficulty levels from easy to hard (11 items) and evaluations of the Istimak Baseline, Istimak Advanced, and Ta’bir Shafawi Baseline courses. Statistical analysis encompassed pretest–posttest comparisons and significance tests on several item pairs (p < 0.05). Overall, there was an increase in the average score of learning outcomes after the AI intervention, indicating improved understanding of Arabic material. Significant improvement overall was achieved in some item pairs; several items showed pattern variation that warrants further contextual analysis. Confounding variables exhibited different trends across categories (age, gender, origin region, core subject), with AI benefits more evident for certain groups. Participants’ attitudes toward AI showed a positive perception regarding fairness, transparency, and relevance of the material, though concerns about data privacy, plagiarism, and potential over-reliance emerged. The findings support a constructivist framework combined with AI to provide more interactive, personalized, and contextual Arabic language learning. AI tools such as LingQ contribute to personalization, increased engagement, and ongoing feedback, while requiring ethical guidelines for AI use, privacy protection, and efforts to maintain academic integrity and reduce bias. Limitations include the single-group experimental design and potential Hawthorne effects. Recommendations include developing AI ethics guidelines, SAP training for instructors, and risk mitigation strategies such as human–AI balance and fair access for all students.
Keywords : Artificial Intelligence, Curriculum, Constructivism, Arabic Language Learning Content
- Annamalai, Nagaletchimee, Brandford Bervell, Dickson Okoree Mireku, and Raphael Papa Kweku Andoh. “Artificial Intelligence in Higher Education: Modelling Students’ Motivation for Continuous Use of ChatGPT Based on a Modified Self-Determination Theory.” Computers and Education: Artificial Intelligence 8 (June 2025): 100346. https://doi.org/10.1016/j.caeai.2024.100346.
- Arnett, Jeffrey Jensen. “Emerging Adulthood: A Theory of Development from the Late Teens through the Twenties.” American Psychologist 55, no. 5 (2000): 469–80. https://doi.org/10.1037/0003-066X.55.5.469.
- Barnas, Syarif, and Irwan Muhammad Ridwan. “Perbedaan Gender dalam Pengetahuan, Sikap, dan Perilaku Mahasiswa Pendidikan Fisika.” Diffraction 1, no. 2 (2019): 34–41. https://doi.org/10.37058/diffraction.v1i2.1328.
- Booth, Margaret Zoller, and Jean M. Gerard. “Self-Esteem and Academic Achievement: A Comparative Study of Adolescent Students in England and the United States.” Compare: A Journal of Comparative and International Education 41, no. 5 (2011): 629–48. https://doi.org/10.1080/03057925.2011.566688.
- Cahyono, Budi. “Analisis Keterampilan Berpikir Kritis dalam Memecahkan Masalah Ditinjau Perbedaan Gender.” Aksioma: Jurnal Program Studi Pendidikan Matematika 8, no. 1 (2017). https://doi.org/10.26877/aks.v8i1.1510.
- Card, David. The Causal Effect of Education on Earnings. Berkeley, CA, 1998. http://cle.berkeley.edu/wp/wp2.pdf.
- Dangi, Udiksha, and Swarn Mittal. “Transition of Students from School to College.” International Journal of Humanities and Social Science Invention 12, no. 6 (2023): 153–59.
- Faisal, Muhammad. “Dampak Kecerdasan Buatan (AI) terhadap Pola Pikir Cerdas Mahasiswa di Pontianak.” Nucleus 5, no. 1 (2024): 60–66. https://doi.org/10.37010/nuc.v5i1.1684.
- Mambu, Joupy G. Z., Dedek Helida Pitra, Aziz Rizki Miftahul Ilmi, Wahyu Nugroho, Natasya V. Leuwol, and Andi Muh Akbar Saputra. “Pemanfaatan Teknologi Artificial Intelligence (AI) dalam Menghadapi Tantangan Mengajar Guru di Era Digital.” Journal on Education 6, no. 1 (2023): 2689–98. https://doi.org/10.31004/joe.v6i1.3304.
- Gleason, P. The Influence of High School Quality on College Success. Center for Education Policy, 2006.
- Hamid, M. Abdul, Danial Hilmi, and M. Syaiful Mustofa. “Pengembangan Bahan Ajar Bahasa Arab Berbasis Teori Belajar Konstruktivisme untuk Mahasiswa.” Arabi: Journal of Arabic Studies 4, no. 1 (2019): 100–112. https://doi.org/10.24865/ajas.v4i1.107.
- Harmilawati, Rifqatussa’diyah, Putri Amalia, Husaini Amaliyah Majid, and Izza As Sahrah. “Peran Teknologi AI dalam Pengembangan Kemampuan Berpikir Kritis Mahasiswa.” Prosiding Seminar Nasional Fakultas Tarbiyah dan Ilmu Keguruan IAIM Sinjai 3 (October 2024): 26–31. https://doi.org/10.47435/sentikjar.v3i0.3134.
- Herliani, Herliani, Didimus Tanah Boleng, and Theodora Maasawet Elsye. Teori Belajar dan Pembelajaran. Klaten: Lakeisha, 2021.
- Heung, Yuk Mui Elly, and Thomas K. F. Chiu. “How ChatGPT Impacts Student Engagement: A Systematic Review and Meta-Analysis Study.” Computers and Education: Artificial Intelligence 8 (June 2025): 100361. https://doi.org/10.1016/j.caeai.2025.100361.
- Kurniawan, Hindra, Adiguna Sasama W. U., and Rika Wahyuni Tambunan. “Potensi AI dalam Meningkatkan Kreativitas dan Literasi dalam Pembelajaran Bahasa Indonesia.” JAMI: Jurnal Ahli Muda Indonesia 5, no. 1 (2024): 10–17. https://doi.org/10.46510/jami.v5i1.285.
- Ifani, Aulyah Zakilah, Muhammad Anis Abdullah, Nadya Vega, and Wahyu Ilahi S. S. “Analisis Ketergantungan Penggunaan ChatGPT di Kalangan Mahasiswa Menyebabkan Penurunan Kualitas Belajar.” Jurnal Pendidikan 3, no. 1 (2024).
- Jeyagowri, K., and M. Ilankumaran. “The Role of Students in Transition from School to College: Different Challenges in ELT.” International Journal of Engineering & Technology 7, no. 4.36 (2018): 630–35. https://doi.org/10.14419/ijet.v7i4.36.24213.
- Khaleel, Mousa. “Female Students Are More Likely to Get Higher Grades Than Male Students.” International Journal of Scientific and Research Publications 7, no. 3 (2017): 378–86.
- Lestari, Widi, Tri Atmojo Kusmayadi, and Farida Nurhasanah. “Kemampuan Pemecahan Masalah Matematika Ditinjau dari Perbedaan Gender.” Aksioma: Jurnal Pendidikan Matematika 10, no. 2 (2021): 1141–50. https://doi.org/10.24127/ajpm.v10i2.3661.
- Ma, Ting. “Systematically Visualizing ChatGPT Used in Higher Education: Publication Trend, Disciplinary Domains, Research Themes, Adoption and Acceptance.” Computers and Education: Artificial Intelligence 8 (June 2025): 100336. https://doi.org/10.1016/j.caeai.2024.100336.
- Marcus, Gary F., Keith J. Fernandes, and Scott P. Johnson. “Infant Rule Learning Facilitated by Speech.” Psychological Science 18, no. 5 (2007): 387–91. https://doi.org/10.1111/j.1467-9280.2007.01910.x.
- Marhento, Giry. “Efektivitas Pembelajaran Kontekstual dalam Mengajarkan Matematika.” Formatif: Jurnal Ilmiah Pendidikan MIPA 1, no. 3 (2015). https://doi.org/10.30998/formatif.v1i3.73.
- Massofia, Fitrah Dinanti, Habibullah Muhammad, Dyah Ayu Khoirunnisa, Arina Elma Husna, and Nur Qomari. “Analisis Penyusunan Soal Maharah Istima’ dan Maharah Qiraah Kelas VII MTs Al-Hikmah Purwoasri.” Lughati: Jurnal Pendidikan Bahasa Arab 2, no. 2 (2024). https://doi.org/10.18860/lg.v5i2.23501.
- Muspiroh, Novianti. “Perbedaan Hasil Belajar Peserta Didik Berdasarkan Gender pada Mata Pelajaran Biologi.” Equalita 2, no. 1 (2020). https://doi.org/10.24235/equalita.v2i1.7055.
- Okodoko, Diepreye, and Isaac Micah Owobete. “School Location and Students’ Academic Performance in Public Secondary Schools in Bayelsa State.” IIARD International Journal of Geography and Environmental Management 11, no. 4 (2025): 37–49.
- Rojas Apaza, Raúl, Rene Paz Paredes, Roberto Arpi, Carmen Nievez Quispe Lino, and Efrain Chura-Zea. “Urban–Rural Gap in Education Performance in Peruvian Public Institutions during 2018.” Frontiers in Education 9 (August 2024): 1394938. https://doi.org/10.3389/feduc.2024.1394938.
- Saputro, M. Nugroho Adi, and Poetri Leharia Pakpahan. “Mengukur Keefektifan Teori Konstruktivisme dalam Pembelajaran.” Journal of Education and Instruction (JOEAI) 4, no. 1 (2021): 24–39. https://doi.org/10.31539/joeai.v4i1.2151.
- Reardon, Sean F. “The Widening Academic Achievement Gap between the Rich and the Poor.” Educational Researcher 40, no. 5 (2011): 312–23. https://doi.org/10.3102/0013189X11430818.
- Sitorus, Michael, and M. David Fadillah Murti. “Analisis Pengaruh Penggunaan Artificial Intelligence pada Pembelajaran di Cyber University.” Jurnal Ilmu Komputer 1, no. 2 (2024).
- Stojanov, Ana, Qian Liu, and Joyce Hwee Ling Koh. “University Students’ Self-Reported Reliance on ChatGPT for Learning: A Latent Profile Analysis.” Computers and Education: Artificial Intelligence 6 (June 2024): 100243. https://doi.org/10.1016/j.caeai.2024.100243.
- Tundreng, Syarifuddin, Kadaruddin Kadaruddin, Rais Abin, Hariadi Syam, and Alifiah Pratiwi. “Strategi Pembelajaran Bahasa Berbantukan Kecerdasan Buatan.” JPPI (Jurnal Penelitian Pendidikan Indonesia) 9, no. 4 (2023): 626–35. https://doi.org/10.29210/020233183.
- University of Alberta; University of Eastern Finland; Athabasca University. “Artificial Intelligence and the Student Experience: An Institutional Perspective.” IAFOR Journal of Education 6, no. 3 (2018): 63–78. https://doi.org/10.22492/ije.6.3.04.
- Yolanda, Renita, Serlin Putri Handyani, Asni Lase Gracia Sapryani Gultom, Friska Junita Nababan, and Linda Sinaga. “Ketimpangan Kualitas Pendidikan antara Sekolah di Perkotaan dan di Pedesaan.” Edusola: Journal Education 1, no. 1 (2025).
- Zahl-Thanem, Alexander, and Arild Blekesaune. “Social Origin and Educational Choices: A Comparative Study of Rural and Urban Students’ School Track Choices in Norway.” Acta Sociologica 68, no. 3 (2025): 389–408. https://doi.org/10.1177/00016993241305615.
Copyright (c) 2025 ulil albab

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
