Medan City Unemployment Rate Prediction Using the Fuzzy Time Series Method of the Chen Model for 2022-2024

Abdul Mazid Gajah (Mathematics Study Program, Faculty of Science and Technology, Islamic University Negeri Sumatera Utara Medan, Indonesia)
Sajaratud Dur (Mathematics Study Program, Faculty of Science and Technology, Islamic University Negeri Sumatera Utara Medan, Indonesia)
Rina Widyasari (Mathematics Study Program, Faculty of Science and Technology, Islamic University Negeri Sumatera Utara Medan, Indonesia)

Abstract


Indonesia is one of the developing countries based on the standard of living; one of the problems that is still being experienced is the problem of unemployment. One method that can be used to predict future conditions is the Fuzzy Time Series Method. The fuzzy Time Series method combines fuzzy logic with time series analysis, where fuzzy logic aims to imitate the human ability to think, which is an alternative to crisp logic. Unemployment is a problem in the life sector that can impact not only yourself and your family but also the country because high unemployment can cause severe impacts, such as a decrease in state income from the tax sector or an increase in crime in society. This study aims to predict the open unemployment rate in the city of Medan, which will continue to increase from 2018-2021, based on the number of the workforce as a consideration for making a policy. The method used is Fuzzy Time Series Chen. The result obtained of discussion and calculation, the unemployment rate prediction in 2022 is 11,998.14; in 2023, it is 11,791.21; and in 2024, it is 11,687.75 people.


Keywords


Prediction; Unemployment; Fuzzy Times Series (FTS) Chen.

Full Text:

PDF

References


Alfajariani, M. Wati, and N. Puspitasari., (2020). Penerapan Metode Fuzzy Time Series Chen dan Hsu dalam Memprediksi Kunjungan Wisatawan di Museum Mulawarman. JURTI.Vol.4 No.2. Universitas Mulawarman: Samarinda. BPS-Survei Angkatan Kerja Nasional (Sankernas) 2007-2009/BPS-National Labour Force Survey 2007-2009. BPS-Survei Angkatan Kerja Nasional (Sankernas) 2015-2020/BPS-National Labour Force Survey 2015-2020. Cheng. H. C., (2008). Fuzzy Time Series Based on Adaptive Expectation Model for TAIEX forecasting. Expert System Application Vol. 34. Adwandha. D. Pandhu, Ratnawati. D. Eka dan Adikara. P. Pandhu., (2017) Prediksi Jumlah Pengangguran Terbuka dii Indonesia Menggunakan Metode Genetic-Based Backpropagation. Journal Pengembangan Teknologi Informasi dan Ilmu Komputer :Universitas Brawijaya. Vol.1 No. 341-351 Putra, A. N., (2019). Prediksi Jumlah Penduduk Menggunakan Fuzzy Time Series Model Chen (Studi Kasus: Kota Tangjungpinang). Setiani. Fitria Eka., (2020). Pengaplikasian Fuzzy Time Series Chen dan Fuzzy Time Series Cheng dalam Memprediksi Kurs Rupiah Terhadap Kurs Dollar Singapura. Skripsi. UIN Syarif Hidayatullah : Jakarta. Muhammad, K. A., (2020). VARIANSI: Journal of Statistics and Its Tauryawati, M. and M. Isa Irawan., (2014). Perbandingan Metode Fuzzy Time Series Cheng dan Metode Box-Jenkins Untuk Memprediksi IHSG. Jurnal Sains dan Seni POMITS vol.3 No.2. Vivianti, M. k. Aidid, and M. Nusrang., (2020).Implementasi Metode Fuzzy Time Series untuk prediksi Jumlah Pengunjung di Benteng Fort Rotterdam. Wong, F.S. (1990). Time Series Forecasting Using Backpropagation Neural Networks. Neurocomputing 2. Xihao S. and L. Yimin. (2008). Average-Based Fuzzy Time Series Models for Forecasting Shanghai Compound Index. World Journal of Modelling and Simulation. Vol. 4: 104-111.




DOI: https://doi.org/10.24952/logaritma.v11i1.8463

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Abdul Mazid Gajah, Sajaratud Dur, Rina Widyasari

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Logaritma : Jurnal Ilmu-ilmu Pendidikan dan Sains

Tadris Matematika FTIK UIN Syekh Ali Hasan Ahmad Addary Padangsidimpuan

ISSN: 2338-8706  (print), 2580-7145 (online)

Jl. T. Rizal Nurdin Km. 4,5 Sihitang Padangsidimpuan

Sumatera Utara 22733 Indonesia

Phone: 0634-22080 Fax: 0634-24022

Email: logaritma.tmm@gmail.com