Predictive Data Modeling: Student's Obstacle in Mathematical Literacy Tasks Focusing on Ratio and Proportion using The K-Nearest Neighbor Algorithm

Ambarsari Kusuma Wardani (Universitas Islam Negeri Raden Fatah Palembang, Sumatera Selatan, Indonesia)
Dadan Dasari (Universitas Pendidikan Indonesia, Jawa Barat, Indonesia)
Sufyani Prabawanto (Universitas Pendidikan Indonesia, Jawa Barat, Indonesia)


Ratio and proportion have a fundamental role in understanding mathematics and science. However, the fact is still found that students still face difficulties in carrying out the stages of formulating, applying and interpreting the process of solving mathematical problems, especially those related to ratio and proportion of material. These three problem solving processes are processes of mathematical literacy. Situations involving students' difficulties in understanding the concepts of ratio and proportion can be considered a learning obstacle. Three factors cause students to experience learning barriers, namely ontogenic barriers (mental ability to learn), didactic barriers (the impact of teacher teaching), and epistemological barriers (student knowledge that has limited context). Therefore, the aim of this research is to predict a data model related to learning obstacles experienced by students in the process of mathematical literacy skills in ratio and proportion material. Data model predictions are carried out using a data mining algorithm, namely K-Nearest Neighbor (K-NN) in Python language via Google Colab. Evaluation of the KNN algorithm using the confusion matrix method shows that the results of calculating the average accuracy of the K-NN method can predict data with an accuracy level of 89%.


K-NN Model prediction; Learning Obstacle; Mathematical Literacy; Ratio and Proportion.

Full Text:



Aldwairi, T., Perera, D., & Novotny, M. A. (2018). An evaluation of the performance of Restricted Boltzmann Machines as a model for anomaly network intrusion detection. Computer Networks, 144, 111–119.


Barbiero, P., Ciravegna, G., Georgiev, D., & Giannini, F. (2021). Pytorch, explain! a python library for logic explained networks. ArXiv Preprint ArXiv:2105.11697.

Çalisici, H. (2018). Middle School Students’ Learning Difficulties in the Ratio-Proportion Topic and a Suggested Solution:" Envelope Technique". Universal Journal of Educational Research, 6(8), 1848–1855.

Carneiro, T., Da Nóbrega, R. V. M., Nepomuceno, T., Bian, G.-B., De Albuquerque, V. H. C., & Reboucas Filho, P. P. (2018). Performance analysis of google colaboratory as a tool for accelerating deep learning applications. IEEE Access, 6, 61677–61685.

Dougherty, B., Bryant, D. P., Bryant, B. R., & Shin, M. (2016). Helping students with mathematics difficulties understand ratios and proportions. Teaching Exceptional Children, 49(2), 96–105.

Jawthari, M., & Stoffová, V. (2021). Predicting students’ academic performance using a modified kNN algorithm. Pollack Periodica, 16(3), 20–26.

Jitendra, A. K., Star, J. R., Starosta, K., Leh, J. M., Sood, S., Caskie, G., Hughes, C. L., & Mack, T. R. (2009). Improving seventh grade students’ learning of ratio and proportion: The role of schema-based instruction. Contemporary Educational Psychology, 34(3), 250–264.

Khandare, A., Agarwal, N., Bodhankar, A., Kulkarni, A., & Mane, I. (2023). Analysis of Python Libraries for Artificial Intelligence. In Intelligent Computing and Networking: Proceedings of IC-ICN 2022 (pp. 157–177). Springer.

Kigo, S. N., Omondi, E. O., & Omolo, B. O. (2023). Assessing predictive performance of supervised machine learning algorithms for a diamond pricing model. Scientific Reports, 13(1), 17315.

Kuhkan, M. (2016). A method to improve the accuracy of k-nearest neighbor algorithm. International Journal of Computer Engineering and Information Technology, 8(6), 90.

Leto, C., Sujana, D., Windyasari, V. S., & Muhammad, R. (2023). KONSEP DATA MINING DAN PENERAPAN.

Mahata, S., Shakya, P., & Babu, N. R. (2021). A robust condition monitoring methodology for grinding wheel wear identification using Hilbert Huang transform. Precision Engineering, 70, 77–91.

Mahesh, B. (2020). Machine learning algorithms-a review. International Journal of Science and Research (IJSR).[Internet], 9(1), 381–386.

Mahmudah, K. R., Indriani, F., Takemori-Sakai, Y., Iwata, Y., Wada, T., & Satou, K. (2021). Classification of Imbalanced Data Represented as Binary Features. Applied Sciences, 11(17), 7825.

Meyer, E. R. (2010). Developing proportional reasoning in Mathematical Literacy students. Stellenbosch: Stellenbosch University.

Moru, E. K. (2009). Epistemological obstacles in coming to understand the limit of a function at undergraduate level: A case from the national university of lesotho. International Journal of Science and Mathematics Education, 7(3), 431–454.

Naik, P., Naik, G., & Patil, M. (2022). Conceptualizing Python in Google COLAB. India: Shashwat Publication.

OECD. (2021). Pisa 2021 Mathematics Framework (Draft). Angewandte Chemie International Edition, 6(11), 951–952., 5–24.

OECD, P. (2012). Assessment and Analytical Framework-Mathematics, Reading, Science, Problem Solving and Financial Literacy, 2012b. France: OECD Publishing.

Prasatha, V. S., Alfeilate, H. A. A., Hassanate, A. B., Lasassmehe, O., Tarawnehf, A. S., Alhasanatg, M. B., & Salmane, H. S. E. (2017). Effects of distance measure choice on knn classifier performance-a review. ArXiv Preprint ArXiv:1708.04321, 56.

Purwanto, A., & Nugroho, H. W. (2023). Analisa Perbandingan Kinerja Algoritma C4. 5 Dan Algoritma K-Nearest Neighbors Untuk Klasifikasi Penerima Beasiswa. Jurnal Teknoinfo, 17(1), 236–243.

Raseman, W. J., Rajagopalan, B., Kasprzyk, J. R., & Kleiber, W. (2020). Nearest neighbor time series bootstrap for generating influent water quality scenarios. Stochastic Environmental Research and Risk Assessment, 34(1), 23–31.

Saabith, A. L. S., Vinothraj, T., & Fareez, M. (2020). Popular python libraries and their application domains. International Journal of Advance Engineering and Research Development, 7(11).

Seliem, M. M. (2022). HandlingOutlier data as missing values by imputation methods: application of machine learning algorithms. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 13(1), 273–286.

Setiawan, Z., Fajar, M., Priyatno, A. M., Putri, A. Y. P., Aryuni, M., Yuliyanti, S., Widiputra, H., Meilani, B. D., Ibrahim, R. N., & Azdy, R. A. (2023). BUKU AJAR DATA MINING. PT. Sonpedia Publishing Indonesia.

Sholikhah, I. I., Harjanta, A. T. J., & Latifah, K. (2023). Machine Learning Untuk Deteksi Berita Hoax Menggunakan BERT. Prosiding Seminar Nasional Informatika, 1(1), 524–531.

Singh, P. (2000). Understanding the concepts of proportion and ratio among grade nine students in Malaysia. International Journal of Mathematical Education in Science and Technology, 31(4), 579–599.

Sudarman, E. J., & Budi, S. (2023). Pengembangan Model Kecerdasan Mesin Extreme Gradient Boosting Untuk Prediksi Keberhasilan Studi Mahasiswa. Jurnal STRATEGI-Jurnal Maranatha, 5(2), 297–314.

Suliztia, M. L., & Fauzan, A. (2020). Comparing Naive Bayes, K-Nearest Neighbor, And Neural Network Classification Methods Of Seat Load Factor In Lombok Outbound Flights. Jurnal Matematika, Statistika Dan Komputasi, 16(2), 187–198.

Suryadi, D. (2016). Didactical design research (ddr): upaya membangun kemandirian berpikir melalui penelitian pembelajaran. Makalah Pada Seminar Nasional Matematika Dan Pendidikan Matematika UNSWAGATI, 6.

Tiflis, O., Ineson, G., & Watts, M. (2019). Ratio and Proportion: An analysis of GCSE resit students’ errors. Proceedings of the British Society for Research into Learning Mathematics, 39(1).

Triguero, I., García‐Gil, D., Maillo, J., Luengo, J., García, S., & Herrera, F. (2019). Transforming big data into smart data: An insight on the use of the k‐nearest neighbors algorithm to obtain quality data. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(2), e1289.

Van Dooren, W., De Bock, D., Hessels, A., Janssens, D., & Verschaffel, L. (2005). Not everything is proportional: Effects of age and problem type on propensities for overgeneralization. Cognition and Instruction, 23(1), 57–86.

Varshney, R. K., Chauhan, S. P. S., & Sharma, V. (2021). A K-NN based Data Reduction Technique in String Space via Space Separation. 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), 223–227.

Wang, A. Y., Mittal, A., Brooks, C., & Oney, S. (2019). How data scientists use computational notebooks for real-time collaboration. Proceedings of the ACM on Human-Computer Interaction, 3(CSCW), 1–30.



  • There are currently no refbacks.

Copyright (c) 2023 Ambarsari Kusuma Wardani, Dadan Dasari, Sufyani Prabawanto

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Logaritma : Jurnal Ilmu-ilmu Pendidikan dan Sains

Tadris Matematika FTIK UIN Syekh Ali Hasan Ahmad Addary Padangsidimpuan

ISSN: 2338-8706  (print), 2580-7145 (online)

Jl. T. Rizal Nurdin Km. 4,5 Sihitang Padangsidimpuan

Sumatera Utara 22733 Indonesia

Phone: 0634-22080 Fax: 0634-24022