Simple Linear Regression Method to Predict Cooking Oil Prices in the Time of Covid-19
Abstract
The background of this research is the soaring price of cooking oil during the Covid-19 period which continues to increase in the city of Padang. The research method used is a case study of data on cooking oil prices in the city of Padang. The purpose of this study is to obtain predictions of cooking oil prices. Linear regression is used as a prediction method for cooking oil prices in the next X(t) period. The research method used is a case study using simple linear regression. In this study, the actual cooking oil price Y(t) is the effect variable and the time period is the causal variable. The linear regression equation obtained is Y'=25239+124.56X. Testing the accuracy of the prediction results using RMSE with a value of 0.1913. The prediction of cooking oil prices using the linear regression method can be said to be in the very good category, it can be seen that the RMSE value is very small in the test and meets the standards.
Keywords
Full Text:
PDFReferences
Ayuni, G. N., & Fitrianah, D. (2019). Penerapan Metode Regresi Linear Untuk Prediksi Penjualan Properti pada PT XYZ. Jurnal Telematika, 14(2), 79–86. https://journal.ithb.ac.id/telematika/article/view/321
Gustriansyah, R. (2017). Analisis Metode Single Exponential Smoothing Dengan Brown Exponential Smoothing Pada Studi Kasus Memprediksi Kuantiti Penjualan Produk Farmasidi Apotek. Seminar Nasional Teknologi Informasi Dan Multimedia 2017, 3, 5–12. https://ojs.amikom.ac.id/index.php/semnasteknomedia/article/view/1653
Hakimah, M., Muhima, R. R., & Yustina, A. (2015). RANCANG BANGUN APLIKASI PERAMALAN PERSEDIAAN BARANG DENGAN METODE TREND PROJECTION. Jurnal Simantec, 5(1). https://doi.org/10.21107/SIMANTEC.V5I1.1023
Hakimah, M., Rahmawati, W. M., & Afandi, A. Y. (2020). Pengukuran Kinerja Metode Peramalan Tipe Exponential Smoothing Dalam Parameter Terbaiknya. Network Engineering Research Operation, 5(1), 44. https://doi.org/10.21107/nero.v5i1.150
Hasibuan, L. H., & Musthofa, S. (2022). Penerapan Metode Regresi Linear Sederhana Untuk Prediksi Harga Beras di Kota Padang | Hasibuan | JOSTECH: Journal of Science and Technology. https://www.ejournal.uinib.ac.id/jurnal/index.php/jostech/article/view/3802/pdf
Indarwati, T., Irawati, T., & Rimawati, E. (2019). Penggunaan Metode Linear Regression Untuk Prediksi Penjualan Smartphone. Jurnal Teknologi Informasi Dan Komunikasi (TIKomSiN), 6(2), 2–7. https://doi.org/10.30646/tikomsin.v6i2.369
Izzah, A., & Widyastuti, R. (2017). Prediksi Harga Saham Menggunakan Improved Multiple Linear Regression untuk Pencegahan Data Outlier. Juni, KINETIK(3), 141–150. https://doi.org/10.22219/kinetik.v2i3.268
Kavitha, S., Varuna, S., & Ramya, R. (2016). A comparative analysis on linear regression and support vector regression. 2016 Online International Conference on Green Engineering and Technologies (IC-GET), 1–5. https://doi.org/10.1109/GET.2016.7916627
Khotimah, T., & Nyndiasari, R. (2017). View of FORECASTING DENGAN METODE REGRESI LINIER PADA SISTEM PENUNJANG KEPUTUSAN UNTUK MEMPREDIKSI JUMLAH PENJUALAN BATIK (STUDI KASUS KUB SARWO ENDAH BATIK TULIS LASEM). https://e-jurnal.pelitanusantara.ac.id/index.php/mantik/article/view/541/327
Kusumawati, N., Kusumawati, N., Marisa, F., & Wijaya, I. D. (2017). PREDIKSI KURS RUPIAH TERHADAP DOLLAR AMERIKA DENGAN MENGGUNAKAN METODE REGRESI LINEAR. JIMP (Jurnal Informatika Merdeka Pasuruan), 2(3). https://doi.org/10.37438/jimp.v2i3.79
Muhartini, A. A., Sahroni, O., Rahmawati, S. D., Febrianti, T., & Mahuda, I. (2021). View of ANALISIS PERAMALAN JUMLAH PENERIMAAN MAHASISWA BARU DENGAN MENGGUNAKAN METODE REGRESI LINEAR SEDERHANA. 17–23. https://bayesian.lppmbinabangsa.id/index.php/home/article/view/2/10
Mulyani, D. (2015). Prediction of New Student Numbers using Least Square Method. IJARAI) International Journal of Advanced Research in Artificial Intelligence, 4(11). www.ijarai.thesai.org
Pranata, A., Hsb, M. A., Akhdansyah, T., Anwar, S., & Statistika, P. S. (2018). Penerapan Metode Pemulusan Eksponensial Ganda dan Tripel Untuk Meramalkan Kunjungan Wisatawan Mancanegara ke Indonesia. Journal of Data Analysis, 1(1), 32–41. https://doi.org/10.24815/JDA.V1I1.11873
Prasetyowati, E. (2018). Aplikasi Penentuan Harga Pokok Produksi Batik Madura Dengan Metode Activity Based Costing Dan Analisis Regresi Linier. JUTI: Jurnal Ilmiah Teknologi Informasi, 16(1), 48. https://doi.org/10.12962/j24068535.v16i1.a690
Putri, D. M., & Hasibuan, L. H. (2020). Penerapan Gerak Brown Geometrik pada Data Saham PT. ANTM. MAp (Mathematics and Applications) Journal, 2(2), 1–10.
Syafruddin, M., Hakim, L., & Despa, D. (2014). Metode Regresi Linier Untuk Prediksi Kebutuhan Energi Listrik Jangka Panjang (Studi Kasus Provinsi Lampung). Jurnal Informatika Dan Teknik Elektro Terapan, 2(2). https://doi.org/10.23960/jitet.v2i2.237
DOI: https://doi.org/10.24952/logaritma.v10i01.5319
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Lilis Harianti Hasibuan, Darvi Mailisa Putri, Miftahul Jannah
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Logaritma : Jurnal Ilmu-ilmu Pendidikan dan Sains
Tadris Matematika FTIK UIN Syekh Ali Hasan Ahmad Addary Padangsidimpuan
ISSN: 2338-8706 (print), 2580-7145 (online)
Jl. T. Rizal Nurdin Km. 4,5 Sihitang Padangsidimpuan
Sumatera Utara 22733 Indonesia
Phone: 0634-22080 Fax: 0634-24022
Email: logaritma.tmm@gmail.com