Simple Linear Regression Method to Predict Cooking Oil Prices in the Time of Covid-19

Lilis Harianti Hasibuan (Matematika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Imam Bonjol Padang, Indonesia)
Darvi Mailisa Putri (Matematika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Imam Bonjol Padang, Indonesia)
Miftahul Jannah (Matematika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Imam Bonjol Padang, Indonesia)

Abstract


The background of this research is the soaring price of cooking oil during the Covid-19 period which continues to increase in the city of Padang. The research method used is a case study of data on cooking oil prices in the city of Padang. The purpose of this study is to obtain predictions of cooking oil prices. Linear regression is used as a prediction method for cooking oil prices in the next X(t) period. The research method used is a case study using simple linear regression. In this study, the actual cooking oil price Y(t) is the effect variable and the time period is the causal variable. The linear regression equation obtained is Y'=25239+124.56X. Testing the accuracy of the prediction results using RMSE with a value of 0.1913. The prediction of cooking oil prices using the linear regression method can be said to be in the very good category, it can be seen that the RMSE value is very small in the test and meets the standards.


Keywords


Prediction; Regresi Linear; RMSE.

Full Text:

PDF

References


Ayuni, G. N., & Fitrianah, D. (2019). Penerapan Metode Regresi Linear Untuk Prediksi Penjualan Properti pada PT XYZ. Jurnal Telematika, 14(2), 79–86. https://journal.ithb.ac.id/telematika/article/view/321

Gustriansyah, R. (2017). Analisis Metode Single Exponential Smoothing Dengan Brown Exponential Smoothing Pada Studi Kasus Memprediksi Kuantiti Penjualan Produk Farmasidi Apotek. Seminar Nasional Teknologi Informasi Dan Multimedia 2017, 3, 5–12. https://ojs.amikom.ac.id/index.php/semnasteknomedia/article/view/1653

Hakimah, M., Muhima, R. R., & Yustina, A. (2015). RANCANG BANGUN APLIKASI PERAMALAN PERSEDIAAN BARANG DENGAN METODE TREND PROJECTION. Jurnal Simantec, 5(1). https://doi.org/10.21107/SIMANTEC.V5I1.1023

Hakimah, M., Rahmawati, W. M., & Afandi, A. Y. (2020). Pengukuran Kinerja Metode Peramalan Tipe Exponential Smoothing Dalam Parameter Terbaiknya. Network Engineering Research Operation, 5(1), 44. https://doi.org/10.21107/nero.v5i1.150

Hasibuan, L. H., & Musthofa, S. (2022). Penerapan Metode Regresi Linear Sederhana Untuk Prediksi Harga Beras di Kota Padang | Hasibuan | JOSTECH: Journal of Science and Technology. https://www.ejournal.uinib.ac.id/jurnal/index.php/jostech/article/view/3802/pdf

Indarwati, T., Irawati, T., & Rimawati, E. (2019). Penggunaan Metode Linear Regression Untuk Prediksi Penjualan Smartphone. Jurnal Teknologi Informasi Dan Komunikasi (TIKomSiN), 6(2), 2–7. https://doi.org/10.30646/tikomsin.v6i2.369

Izzah, A., & Widyastuti, R. (2017). Prediksi Harga Saham Menggunakan Improved Multiple Linear Regression untuk Pencegahan Data Outlier. Juni, KINETIK(3), 141–150. https://doi.org/10.22219/kinetik.v2i3.268

Kavitha, S., Varuna, S., & Ramya, R. (2016). A comparative analysis on linear regression and support vector regression. 2016 Online International Conference on Green Engineering and Technologies (IC-GET), 1–5. https://doi.org/10.1109/GET.2016.7916627

Khotimah, T., & Nyndiasari, R. (2017). View of FORECASTING DENGAN METODE REGRESI LINIER PADA SISTEM PENUNJANG KEPUTUSAN UNTUK MEMPREDIKSI JUMLAH PENJUALAN BATIK (STUDI KASUS KUB SARWO ENDAH BATIK TULIS LASEM). https://e-jurnal.pelitanusantara.ac.id/index.php/mantik/article/view/541/327

Kusumawati, N., Kusumawati, N., Marisa, F., & Wijaya, I. D. (2017). PREDIKSI KURS RUPIAH TERHADAP DOLLAR AMERIKA DENGAN MENGGUNAKAN METODE REGRESI LINEAR. JIMP (Jurnal Informatika Merdeka Pasuruan), 2(3). https://doi.org/10.37438/jimp.v2i3.79

Muhartini, A. A., Sahroni, O., Rahmawati, S. D., Febrianti, T., & Mahuda, I. (2021). View of ANALISIS PERAMALAN JUMLAH PENERIMAAN MAHASISWA BARU DENGAN MENGGUNAKAN METODE REGRESI LINEAR SEDERHANA. 17–23. https://bayesian.lppmbinabangsa.id/index.php/home/article/view/2/10

Mulyani, D. (2015). Prediction of New Student Numbers using Least Square Method. IJARAI) International Journal of Advanced Research in Artificial Intelligence, 4(11). www.ijarai.thesai.org

Pranata, A., Hsb, M. A., Akhdansyah, T., Anwar, S., & Statistika, P. S. (2018). Penerapan Metode Pemulusan Eksponensial Ganda dan Tripel Untuk Meramalkan Kunjungan Wisatawan Mancanegara ke Indonesia. Journal of Data Analysis, 1(1), 32–41. https://doi.org/10.24815/JDA.V1I1.11873

Prasetyowati, E. (2018). Aplikasi Penentuan Harga Pokok Produksi Batik Madura Dengan Metode Activity Based Costing Dan Analisis Regresi Linier. JUTI: Jurnal Ilmiah Teknologi Informasi, 16(1), 48. https://doi.org/10.12962/j24068535.v16i1.a690

Putri, D. M., & Hasibuan, L. H. (2020). Penerapan Gerak Brown Geometrik pada Data Saham PT. ANTM. MAp (Mathematics and Applications) Journal, 2(2), 1–10.

Syafruddin, M., Hakim, L., & Despa, D. (2014). Metode Regresi Linier Untuk Prediksi Kebutuhan Energi Listrik Jangka Panjang (Studi Kasus Provinsi Lampung). Jurnal Informatika Dan Teknik Elektro Terapan, 2(2). https://doi.org/10.23960/jitet.v2i2.237




DOI: https://doi.org/10.24952/logaritma.v10i01.5319

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Lilis Harianti Hasibuan, Darvi Mailisa Putri, Miftahul Jannah

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Logaritma : Jurnal Ilmu-ilmu Pendidikan dan Sains

Tadris Matematika FTIK UIN Syekh Ali Hasan Ahmad Addary Padangsidimpuan

ISSN: 2338-8706  (print), 2580-7145 (online)

Jl. T. Rizal Nurdin Km. 4,5 Sihitang Padangsidimpuan

Sumatera Utara 22733 Indonesia

Phone: 0634-22080 Fax: 0634-24022

Email: logaritma.tmm@gmail.com